Difference between revisions of "Aufgaben:Exercise 3.5Z: Application of the Residue Theorem"

From LNTwww
 
(33 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Laplace–Rücktransformation
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform
 
}}
 
}}
  
[[File:P_ID1781__LZI_Z_3_5.png|right|Sechs verschiedene Pol–Nullstellen–Konfigurationen]]
+
[[File:P_ID1781__LZI_Z_3_5.png|right|frame|Six pole–zero configurations]]
Die Spektralfunktion $Y_{\rm L}(p)$ sei in Pol–Nullstellen–Form gegeben, gekennzeichnet durch
+
Let the spectral function  $Y_{\rm L}(p)$  be given in pole–zero notation characterized by
*$Z$ Nullstellen $p_{{\rm o}i}$,  
+
*$Z$  zeros  $p_{{\rm o}i}$,  
*$N$> Pole $p_{{\rm x}i}$, sowie
+
*$N$  poles  $p_{{\rm x}i}$, and
*die Konstante $K$.  
+
*the constant  $K$.  
  
Betrachtet werden in dieser Aufgabe die in der Grafik dargestellten Konfigurationen, wobei stets $K= 2$ gilt.
 
  
Für den Fall, dass die Anzahl $Z$ der Nullstellen kleiner als die Anzahl $N$ der Pole ist, kann das zugehörige Zeitsignal $y(t)$ durch Anwendung des [[Lineare_zeitinvariante_Systeme/Laplace–Rücktransformation#Formulierung_des_Residuensatzes|Residuensatzes]] direkt ermittelt werden. In diesem Fall gilt
+
In the following,  the configurations shown in the diagram are considered.  Let always  $K= 2$ hold.
$$y(t) = \sum_{i=1}^{I} \left \{
+
 
 +
In the case that the number  $Z$  of zeros is less than the number  $N$  of poles,  the corresponding time signal  $y(t)$  can be determined directly by applying the  [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform#Formulation_of_the_residue_theorem|residue theorem]] .  
 +
 
 +
In this case:
 +
:$$y(t) = \sum_{i=1}^{I} \left \{
 
  Y_{\rm L}(p)\cdot (p - p_{{\rm x}i})\cdot  {\rm e}^{\hspace{0.05cm}p
 
  Y_{\rm L}(p)\cdot (p - p_{{\rm x}i})\cdot  {\rm e}^{\hspace{0.05cm}p
 
  \hspace{0.05cm}t}
 
  \hspace{0.05cm}t}
 
  \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}i}} \right
 
  \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}i}} \right
  \} \hspace{0.05cm},$$
+
  \} \hspace{0.05cm}.$$
wobei $I$ die Anzahl der unterscheidbaren Pole angibt. Bei allen hier vorgegebenen Konstellationen gilt stets $I = N$.
+
$I$  indicates the number of distinguishable poles;    $I = N$ holds  for all given constellations.
 +
 
 +
 
 +
 
 +
 
  
''Hinweise:''
 
*Die Aufgabe gehört zum Kapitel  [[Lineare_zeitinvariante_Systeme/Laplace–Rücktransformation|Laplace–Rücktransformation]].
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
*Ist das Zeitsignal $y(t)$ komplex, so kann $Y_{\rm L}(p)$ nicht als Schaltung realisiert werden. Die Anwendung des Residuensatzes ist aber auch in diesem Fall möglich.
 
*Die komplexe Frequenz $p$, die Nullstellen $p_{{\rm o}i}$ sowie die Pole $p_{{\rm ox}i}$ beschreiben in dieser Aufgabe jeweils normierte Größen ohne Einheit. Damit ist auch die Zeit $t$ dimensionslos.
 
  
 +
Please note:
 +
*The exercise belongs to the chapter   [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform|Inverse Laplace Transform]].
 +
*If the time signal  $y(t)$  is complex,  then  $Y_{\rm L}(p)$  cannot be realized as a circuit.  However, the application of the residue theorem is still possible.
 +
*The complex frequency  $p$,  the zeros  $p_{{\rm o}i}$  as well as the poles  $p_{{\rm x}i}$  each describe normalized quantities without units in this exercise.
 +
*Thus,  time  $t$  is dimensionless, too.
  
===Fragebogen===
+
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Bei welchen Konfigurationen lässt sich der Residuensatz nicht direkt anwenden?
+
{For which configurations can the residue theorem&nbsp; <u>not be applied directly</u>?
 
|type="[]"}
 
|type="[]"}
- Konfiguration A,
+
- Configuration &nbsp;$\rm A$,
+ Konfiguration B,
+
+ Configuration &nbsp;$\rm B$,
- Konfiguration C,
+
- Configuration &nbsp;$\rm C$,
+ Konfiguration D,
+
+ Configuration &nbsp;$\rm D$,
- Konfiguration E,
+
- Configuration &nbsp;$\rm E$,
+ Konfiguration F,
+
+ Configuration &nbsp;$\rm F$.
  
  
{Berechnen Sie $y(t)$ für die Konfiguration <b>A</b> mit $K= 2$ und $p_{\rm x} = -1$. Welcher Zahlenwert ergibt sich für den Zeitpunkt $t = 1$?
+
{Compute &nbsp;$y(t)$&nbsp; for configuration &nbsp;$\rm A$&nbsp; with &nbsp;$K= 2$&nbsp; and &nbsp;$p_{\rm x} = -1$.&nbsp; What is the numerical value for time &nbsp;$t = 1$?
 
|type="{}"}
 
|type="{}"}
Konfiguration '''A''': &nbsp; $\ {\rm Re}\{y(t = 1)\}  \ =$  { 0.736 3% }
+
$\ {\rm Re}\{y(t = 1)\}  \ = \ $  { 0.736 3% }
$\ {\rm Im}\{y(t = 1)\}  \ =$ { 0. }
+
$\ {\rm Im}\{y(t = 1)\}  \ = \ $ { 0. }
  
  
{Berechnen Sie $y(t)$ für die Konfiguration <b>C</b> mit $K= 2$ und $p_{\rm x} = -0.2 + {\rm j} \cdot 1.5\pi$. Welcher Zahlenwert ergibt sich für den Zeitpunkt $t = 1$?
+
{Compute &nbsp;$y(t)$&nbsp; for configuration &nbsp;$\rm C$&nbsp; with &nbsp;$K= 2$&nbsp; and &nbsp;$p_{\rm x} = -0.2 + {\rm j} \cdot 1.5\pi$.&nbsp; What numerical value is obtained for time &nbsp;$t = 1$?
 
|type="{}"}
 
|type="{}"}
Konfiguration '''C''': &nbsp; $\ {\rm Re}\{y(t = 1)\}  \ =$ { 0. }
+
$\ {\rm Re}\{y(t = 1)\}  \ = \ $ { 0. }
$\ {\rm Im}\{y(t = 1)\}  \ =$ { 1.638 3% }
+
$\ {\rm Im}\{y(t = 1)\}  \ = \ $ { -1.643--1.633 }
  
  
{Welcher Signalwert $y(t = 1)$ ergibt sich bei der Konstellation <b>E</b> mit $K= 2$ und zwei Polstellen bei $p_{\rm x} = -0.2 \pm {\rm j} \cdot 1.5\pi$?
+
{What signal value &nbsp;$y(t = 1)$&nbsp; is obtained for the constellation &nbsp;$\rm E$&nbsp; with &nbsp;$K= 2$&nbsp; and two poles at &nbsp;$p_{\rm x} = -0.2 \pm {\rm j} \cdot 1.5\pi$?
 
|type="{}"}
 
|type="{}"}
Konfiguration '''E''': &nbsp; $\ {\rm Re}\{y(t = 1)\}  \ =$ { 0.347 3% }
+
$\ {\rm Re}\{y(t = 1)\}  \ = \ $ { -0.357--0.337 }
$\ {\rm Im}\{y(t = 1)\}  \ =$ { 0. }
+
$\ {\rm Im}\{y(t = 1)\}  \ = \ $ { 0. }
  
  
Line 60: Line 68:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:<b>1.</b>&nbsp;&nbsp;Voraussetzung für die Anwendung des Residuensatzes ist, dass es weniger Nullstellen als Pole gibt, das heißt, es muss <i>Z</i> < <i>N</i> gelten. Diese Voraussetzung ist <u>bei den Konfigurationen <b>B</b>, <b>D</b> und <b>F</b> nicht gegeben</u>. Hier muss zunächst eine Partialbruchzerlegung vorgenommen werden, zum Beispiel für die Konfiguration <b>B</b> mit <i>p</i><sub>x</sub> = &ndash;1:
+
'''(1)'''&nbsp; <u>Suggested solutions 2,&nbsp; 4&nbsp; and&nbsp; 6</u>&nbsp; are correct:
 +
*The prerequisite for the application of the residue theorem is that there are fewer zeros than poles,&nbsp; that is, &nbsp;$Z < N$&nbsp; must hold.  
 +
*This condition is not met for the configurations &nbsp;$\rm B$, &nbsp;$\rm D$ and &nbsp;$\rm F$.  
 +
*First,&nbsp; a partial fraction decomposition must be made here,&nbsp; for example for configuration &nbsp;$\rm B$&nbsp; with &nbsp;$p_x =  -1$:
 
:$$Y_{\rm L}(p)=  \frac {p} {p +1}= 1-\frac {1} {p +1}
 
:$$Y_{\rm L}(p)=  \frac {p} {p +1}= 1-\frac {1} {p +1}
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
  
:<b>2.</b>&nbsp;&nbsp;Mit <i>Y</i><sub>L</sub>(<i>p</i>) = 2/(<i>p</i> + 1) ergibt sich aus dem Residuensatz (<i>I</i> = 1):
+
 
 +
 
 +
'''(2)'''&nbsp; Considering &nbsp;$Y_{\rm L}(p) = 2/(p+1)$&nbsp; it follows from the residue theorem with &nbsp;$I=1$:
 
:$$y(t) = 2 \cdot  {\rm e}^{\hspace{0.05cm}p  \hspace{0.05cm}t}
 
:$$y(t) = 2 \cdot  {\rm e}^{\hspace{0.05cm}p  \hspace{0.05cm}t}
 
  \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-1}= 2 \cdot  {\rm
 
  \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-1}= 2 \cdot  {\rm
 
  e}^{-  \hspace{0.05cm}t}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}y(t=1)
 
  e}^{-  \hspace{0.05cm}t}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}y(t=1)
  =\frac{2}{\rm e}  \hspace{0.15cm}\underline{ \approx 0.736 \hspace{0.15cm}{\rm (rein\hspace{0.15cm}reell)}}
+
  =\frac{2}{\rm e}  \hspace{0.15cm}\underline{ \approx 0.736 \hspace{0.15cm}{\rm (purely\hspace{0.15cm}real)}}
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
  
:<b>3.</b>&nbsp;&nbsp;Bei gleicher Vorgehensweise wie in der Teilaufgabe b) erhält man nun:
+
 
 +
 
 +
[[File:P_ID1782__LZI_Z_3_5_c.png|right|frame|Complex signals at a single complex pole]]
 +
'''(3)'''&nbsp; Using the same procedure as in subtask&nbsp; '''(2)'''&nbsp; the following is obtained:
 
:$$y(t) = 2 \cdot  {\rm e}^{\hspace{0.05cm}-(0.2 \hspace{0.05cm}+
 
:$$y(t) = 2 \cdot  {\rm e}^{\hspace{0.05cm}-(0.2 \hspace{0.05cm}+
 
  \hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}1.5 \pi) \hspace{0.05cm} \cdot \hspace{0.05cm}t}
 
  \hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}1.5 \pi) \hspace{0.05cm} \cdot \hspace{0.05cm}t}
Line 81: Line 97:
 
  \hspace{0.05cm}t}
 
  \hspace{0.05cm}t}
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
:Aufgrund des zweiten Terms handelt es sich um ein komplexes Signal, dessen Phase in mathematisch positiver Richtung (entgegen dem Uhrzeigersinn) dreht. Für <i>t</i> = 1 gilt:
+
*Due to the second term,&nbsp; it is a complex signal whose phase rotates in the mathematically positive direction&nbsp; (counterclockwise)&nbsp;.  
:$$y(t = 1)  = 2 \cdot  {\rm e}^{\hspace{0.05cm}-0.2} \cdot  \left [
+
*For time &nbsp;$t=1$,&nbsp; the following holds:
 +
:$$y(t = 1)  = 2 \cdot  {\rm e}^{\hspace{0.05cm}-0.2} \cdot  \big [
 
  \cos(1.5 \pi) + {\rm j} \cdot \sin(1.5 \pi)
 
  \cos(1.5 \pi) + {\rm j} \cdot \sin(1.5 \pi)
  \right ]= - {\rm j} \cdot 1.638$$
+
  \big ]= - {\rm j} \cdot 1.638$$
 
:$$\Rightarrow
 
:$$\Rightarrow
 
  \hspace{0.3cm}{\rm Re}\{y(t = 1)\}  \hspace{0.15cm}\underline{ = 0},\hspace{0.2cm}  {\rm Im}\{y(t = 1)\} \hspace{0.15cm}\underline{=- 1.638}
 
  \hspace{0.3cm}{\rm Re}\{y(t = 1)\}  \hspace{0.15cm}\underline{ = 0},\hspace{0.2cm}  {\rm Im}\{y(t = 1)\} \hspace{0.15cm}\underline{=- 1.638}
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
:Die linke Grafik zeigt das komplexe Signal für einen Pol bei <i>p</i><sub>x</sub> = &ndash;0.2 + j &middot; 1.5 &pi;. Rechts daneben sieht man das dazu konjugiert&ndash;komplexe Signal, wenn der Pol bei <i>p</i><sub>x</sub> = &ndash;0.2 &ndash; j &middot; 1.5 &pi; liegt.
+
*The left graph shows the signal for a pole at &nbsp;$p_x =  -2 + {\rm j} \cdot 1.5 \pi$.&nbsp;  
[[File:P_ID1782__LZI_Z_3_5_c.png|center|]]
+
*The right graph shows the conjugate complex signal to it can be seen for &nbsp;$p_x =  -2 - {\rm j} \cdot 1.5 \pi$.
:<b>4.</b>&nbsp;&nbsp;Nun gilt <i>I</i> = 2. Die Residien von <i>p</i><sub>x1</sub> bzw. <i>p</i><sub>x2</sub> liefern:
+
 
:$$y_1(t) \hspace{0.25cm} = \hspace{0.2cm}
+
 
  \frac {K \cdot (p-p_{{\rm x}1})} { (p-p_{{\rm x}1})(p-p_{{\rm x}2})} \cdot  {\rm e}^{\hspace{0.05cm}p
+
 
 +
[[File:P_ID1783__LZI_Z_3_5_d.png|right|frame|Signal curve of configuration&nbsp; $\rm E$]]  
 +
'''(4)'''&nbsp; Now &nbsp;$I=2$ holds.&nbsp;  The residuals of &nbsp;$p_{x1}$&nbsp; and &nbsp;$p_{x2}$&nbsp; yield:
 +
:$$y_1(t) =
 +
  \frac {K \cdot (p-p_{{\rm x}1})} { (p-p_{{\rm x}1})(p-p_{{\rm x}2})} \cdot  {\rm e}^{\hspace{0.05cm}p\hspace{0.05cm}\cdot
 
  \hspace{0.05cm}t}
 
  \hspace{0.05cm}t}
 
  \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}1}}=
 
  \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}1}}=
  \frac {K } { p_{{\rm x}1}-p_{{\rm x}2}} \cdot  {\rm e}^{\hspace{0.05cm}p_{{\rm x}1}
+
  \frac {K } { p_{{\rm x}1}-p_{{\rm x}2}} \cdot  {\rm e}^{\hspace{0.05cm}p_{{\rm x}1}\hspace{0.05cm}\cdot
 
  \hspace{0.05cm}t}
 
  \hspace{0.05cm}t}
  \hspace{0.05cm} ,\\
+
  \hspace{0.05cm} ,$$
y_2(t) \hspace{0.25cm} = \hspace{0.2cm}
+
:$$ y_2(t) =
  \frac {K } { p_{{\rm x}2}-p_{{\rm x}1}} \cdot  {\rm e}^{\hspace{0.05cm}p_{{\rm x}2}
+
  \frac {K } { p_{{\rm x}2}-p_{{\rm x}1}} \cdot  {\rm e}^{\hspace{0.05cm}p_{{\rm x}2}\hspace{0.05cm}\cdot
 
  \hspace{0.05cm}t}=
 
  \hspace{0.05cm}t}=
  -\frac {K } { p_{{\rm x}1}-p_{{\rm x}2}} \cdot  {\rm e}^{-p_{{\rm x}1}
+
  -\frac {K } { p_{{\rm x}1}-p_{{\rm x}2}} \cdot  {\rm e}^{-p_{{\rm x}1}\hspace{0.05cm}\cdot
 
  \hspace{0.05cm}t}$$
 
  \hspace{0.05cm}t}$$
:$$\Rightarrow
+
:$$y(t)= y_1(t)+y_2(t) =
\hspace{0.3cm}y(t)\hspace{0.25cm} = \hspace{0.2cm} y_1(t)+y_2(t) =
 
 
  \frac {2 \cdot {\rm e}^{\hspace{0.05cm}-0.2
 
  \frac {2 \cdot {\rm e}^{\hspace{0.05cm}-0.2
 
\hspace{0.08cm}\cdot
 
\hspace{0.08cm}\cdot
  \hspace{0.05cm}t}}{{\rm j} \cdot 3 \pi} \cdot \left [ \cos(.) + {\rm j} \cdot \sin(.)
+
  \hspace{0.05cm}t}}{{\rm j} \cdot 3 \pi} \cdot \big [ \cos(.) + {\rm j} \cdot \sin(.)
  - \cos(.) + {\rm j} \cdot \sin(.)\right ]=\\
+
  - \cos(.) + {\rm j} \cdot \sin(.)\big ]$$
  \hspace{0.25cm} =  \hspace{0.2cm}
+
:$$\Rightarrow
 +
  \hspace{0.3cm}y(t)=   
 
  \frac {4 }{ 3 \pi} \cdot {\rm e}^{\hspace{0.05cm}-0.2
 
  \frac {4 }{ 3 \pi} \cdot {\rm e}^{\hspace{0.05cm}-0.2
 
\hspace{0.08cm}\cdot
 
\hspace{0.08cm}\cdot
  \hspace{0.05cm}t}\cdot  \sin(1.5\pi \cdot t)\hspace{0.3cm}\Rightarrow
+
  \hspace{0.05cm}t}\cdot  \sin(1.5\pi \cdot t)$$
\hspace{0.3cm}y(t=1)= -\frac {4 }{ 3 \pi} \cdot {\rm e}^{\hspace{0.05cm}-0.2
+
:$$\Rightarrow
 +
\hspace{0.3cm}y(t=1)= -\frac {4 }{ 3 \pi} \cdot {\rm e}^{\hspace{0.05cm}-0.2
 
\hspace{0.08cm}\cdot
 
\hspace{0.08cm}\cdot
 
  \hspace{0.05cm}t}  \hspace{0.15cm}\underline{= -0.347}
 
  \hspace{0.05cm}t}  \hspace{0.15cm}\underline{= -0.347}
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
:Die Grafik zeigt den (rein reellen) Signalverlauf <i>y</i>(<i>t</i>) für die Konfiguration <b>E</b>.
+
 
[[File:P_ID1783__LZI_Z_3_5_d.png|center|]]
+
The graph shows the&nbsp; (purely real)&nbsp; signal curve&nbsp; $y(t)$&nbsp; for this configuration.
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^3.3 Laplace–Rücktransformation^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^3.3 Inverse Laplace Transform^]]

Latest revision as of 11:12, 10 November 2021

Six pole–zero configurations

Let the spectral function  $Y_{\rm L}(p)$  be given in pole–zero notation characterized by

  • $Z$  zeros  $p_{{\rm o}i}$,
  • $N$  poles  $p_{{\rm x}i}$, and
  • the constant  $K$.


In the following,  the configurations shown in the diagram are considered.  Let always  $K= 2$ hold.

In the case that the number  $Z$  of zeros is less than the number  $N$  of poles,  the corresponding time signal  $y(t)$  can be determined directly by applying the  residue theorem .

In this case:

$$y(t) = \sum_{i=1}^{I} \left \{ Y_{\rm L}(p)\cdot (p - p_{{\rm x}i})\cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}i}} \right \} \hspace{0.05cm}.$$

$I$  indicates the number of distinguishable poles;    $I = N$ holds  for all given constellations.




Please note:

  • The exercise belongs to the chapter  Inverse Laplace Transform.
  • If the time signal  $y(t)$  is complex,  then  $Y_{\rm L}(p)$  cannot be realized as a circuit.  However, the application of the residue theorem is still possible.
  • The complex frequency  $p$,  the zeros  $p_{{\rm o}i}$  as well as the poles  $p_{{\rm x}i}$  each describe normalized quantities without units in this exercise.
  • Thus,  time  $t$  is dimensionless, too.


Questions

1

For which configurations can the residue theorem  not be applied directly?

Configuration  $\rm A$,
Configuration  $\rm B$,
Configuration  $\rm C$,
Configuration  $\rm D$,
Configuration  $\rm E$,
Configuration  $\rm F$.

2

Compute  $y(t)$  for configuration  $\rm A$  with  $K= 2$  and  $p_{\rm x} = -1$.  What is the numerical value for time  $t = 1$?

$\ {\rm Re}\{y(t = 1)\} \ = \ $

$\ {\rm Im}\{y(t = 1)\} \ = \ $

3

Compute  $y(t)$  for configuration  $\rm C$  with  $K= 2$  and  $p_{\rm x} = -0.2 + {\rm j} \cdot 1.5\pi$.  What numerical value is obtained for time  $t = 1$?

$\ {\rm Re}\{y(t = 1)\} \ = \ $

$\ {\rm Im}\{y(t = 1)\} \ = \ $

4

What signal value  $y(t = 1)$  is obtained for the constellation  $\rm E$  with  $K= 2$  and two poles at  $p_{\rm x} = -0.2 \pm {\rm j} \cdot 1.5\pi$?

$\ {\rm Re}\{y(t = 1)\} \ = \ $

$\ {\rm Im}\{y(t = 1)\} \ = \ $


Solution

(1)  Suggested solutions 2,  4  and  6  are correct:

  • The prerequisite for the application of the residue theorem is that there are fewer zeros than poles,  that is,  $Z < N$  must hold.
  • This condition is not met for the configurations  $\rm B$,  $\rm D$ and  $\rm F$.
  • First,  a partial fraction decomposition must be made here,  for example for configuration  $\rm B$  with  $p_x = -1$:
$$Y_{\rm L}(p)= \frac {p} {p +1}= 1-\frac {1} {p +1} \hspace{0.05cm} .$$


(2)  Considering  $Y_{\rm L}(p) = 2/(p+1)$  it follows from the residue theorem with  $I=1$:

$$y(t) = 2 \cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-1}= 2 \cdot {\rm e}^{- \hspace{0.05cm}t}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}y(t=1) =\frac{2}{\rm e} \hspace{0.15cm}\underline{ \approx 0.736 \hspace{0.15cm}{\rm (purely\hspace{0.15cm}real)}} \hspace{0.05cm} .$$


Complex signals at a single complex pole

(3)  Using the same procedure as in subtask  (2)  the following is obtained:

$$y(t) = 2 \cdot {\rm e}^{\hspace{0.05cm}-(0.2 \hspace{0.05cm}+ \hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}1.5 \pi) \hspace{0.05cm} \cdot \hspace{0.05cm}t} = 2 \cdot {\rm e}^{\hspace{0.05cm}-0.2 \hspace{0.08cm}\cdot \hspace{0.05cm}t}\cdot {\rm e}^{\hspace{0.05cm}-{\rm j} \hspace{0.08cm}\cdot \hspace{0.05cm}1.5 \pi\hspace{0.05cm}\cdot \hspace{0.05cm}t} \hspace{0.05cm} .$$
  • Due to the second term,  it is a complex signal whose phase rotates in the mathematically positive direction  (counterclockwise) .
  • For time  $t=1$,  the following holds:
$$y(t = 1) = 2 \cdot {\rm e}^{\hspace{0.05cm}-0.2} \cdot \big [ \cos(1.5 \pi) + {\rm j} \cdot \sin(1.5 \pi) \big ]= - {\rm j} \cdot 1.638$$
$$\Rightarrow \hspace{0.3cm}{\rm Re}\{y(t = 1)\} \hspace{0.15cm}\underline{ = 0},\hspace{0.2cm} {\rm Im}\{y(t = 1)\} \hspace{0.15cm}\underline{=- 1.638} \hspace{0.05cm} .$$
  • The left graph shows the signal for a pole at  $p_x = -2 + {\rm j} \cdot 1.5 \pi$. 
  • The right graph shows the conjugate complex signal to it can be seen for  $p_x = -2 - {\rm j} \cdot 1.5 \pi$.


Signal curve of configuration  $\rm E$

(4)  Now  $I=2$ holds.  The residuals of  $p_{x1}$  and  $p_{x2}$  yield:

$$y_1(t) = \frac {K \cdot (p-p_{{\rm x}1})} { (p-p_{{\rm x}1})(p-p_{{\rm x}2})} \cdot {\rm e}^{\hspace{0.05cm}p\hspace{0.05cm}\cdot \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}1}}= \frac {K } { p_{{\rm x}1}-p_{{\rm x}2}} \cdot {\rm e}^{\hspace{0.05cm}p_{{\rm x}1}\hspace{0.05cm}\cdot \hspace{0.05cm}t} \hspace{0.05cm} ,$$
$$ y_2(t) = \frac {K } { p_{{\rm x}2}-p_{{\rm x}1}} \cdot {\rm e}^{\hspace{0.05cm}p_{{\rm x}2}\hspace{0.05cm}\cdot \hspace{0.05cm}t}= -\frac {K } { p_{{\rm x}1}-p_{{\rm x}2}} \cdot {\rm e}^{-p_{{\rm x}1}\hspace{0.05cm}\cdot \hspace{0.05cm}t}$$
$$y(t)= y_1(t)+y_2(t) = \frac {2 \cdot {\rm e}^{\hspace{0.05cm}-0.2 \hspace{0.08cm}\cdot \hspace{0.05cm}t}}{{\rm j} \cdot 3 \pi} \cdot \big [ \cos(.) + {\rm j} \cdot \sin(.) - \cos(.) + {\rm j} \cdot \sin(.)\big ]$$
$$\Rightarrow \hspace{0.3cm}y(t)= \frac {4 }{ 3 \pi} \cdot {\rm e}^{\hspace{0.05cm}-0.2 \hspace{0.08cm}\cdot \hspace{0.05cm}t}\cdot \sin(1.5\pi \cdot t)$$
$$\Rightarrow \hspace{0.3cm}y(t=1)= -\frac {4 }{ 3 \pi} \cdot {\rm e}^{\hspace{0.05cm}-0.2 \hspace{0.08cm}\cdot \hspace{0.05cm}t} \hspace{0.15cm}\underline{= -0.347} \hspace{0.05cm} .$$

The graph shows the  (purely real)  signal curve  $y(t)$  for this configuration.