Difference between revisions of "Aufgaben:Exercise 4.4: Coaxial Cable - Frequency Response"

From LNTwww
 
(27 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Koaxialkabel
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Properties_of_Coaxial_Cables
 
}}
 
}}
  
[[File:P_ID1813__LZI_A_4_4.png|right|Verschiedene Koaxialkabel]]
+
[[File:LZI_A_4_4_vers3.png|right|frame|Various coaxial cable types]]
Ein so genanntes Normalkoaxialkabel der Länge $l$ mit
+
A so-called normal coaxial cable of length  $l$  with
*dem Kerndurchmesser 2.6 mm,  
+
*core diameter  $\text{2.6 mm}$,  and
*dem Außendurchmesser 9.5 mm, und
+
*outer diameter  $\text{9.5 mm}$
 
   
 
   
besitzt den folgenden Frequenzgang:
+
 
$$H_{\rm K}(f)   {\rm e}^{- \alpha_0 \hspace{0.05cm} \cdot \hspace{0.05cm} l}  \cdot
+
has the following frequency response:
 +
:$$H_{\rm K}(f) {\rm e}^{- \alpha_0 \hspace{0.05cm} \cdot \hspace{0.05cm} l}  \cdot
 
   {\rm e}^{- \alpha_1  \hspace{0.05cm}\cdot \hspace{0.05cm}l \hspace{0.05cm}\cdot \hspace{0.05cm}f}  \cdot
 
   {\rm e}^{- \alpha_1  \hspace{0.05cm}\cdot \hspace{0.05cm}l \hspace{0.05cm}\cdot \hspace{0.05cm}f}  \cdot
 
   {\rm e}^{- \alpha_2  \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot
 
   {\rm e}^{- \alpha_2  \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot
Line 16: Line 17:
 
   {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2  \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot
 
   {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2  \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot
 
   \sqrt{f}}  \hspace{0.05cm}.$$
 
   \sqrt{f}}  \hspace{0.05cm}.$$
Die Dämpfungsparameter $\alpha_0$, $\alpha_1$ und $\alpha_2$ sind in „Neper pro Kilometer” (Np/km)  einzusetzen und die Phasenparameter $\beta_1$ und $\beta_2$ in „Radian pro Kilometer” (rad/km). Es gelten folgende Zahlenwerte:
+
The attenuation parameters  $\alpha_0$,  $\alpha_1$ and  $\alpha_2$ are to be used in  "Neper per kilometer"  (Np/km)  and the phase parameters  $\beta_1$ and  $\beta_2$ in  "Radian per kilometer"  (rad/km).  The following numerical values apply:
$$\alpha_0 = 0.00162 \hspace{0.15cm}{\rm Np}/{\rm km} \hspace{0.05cm},\hspace{0.2cm}
+
:$$\alpha_0 = 0.00162 \hspace{0.15cm}{\rm Np}/{\rm km} \hspace{0.05cm},$$
  \alpha_1 = 0.000435 \hspace{0.15cm} {\rm Np}/{{\rm km} \cdot {\rm MHz}} \hspace{0.05cm},
+
:$$\alpha_1 = 0.000435 \hspace{0.15cm} {\rm Np}/{{\rm km} \cdot {\rm MHz}} \hspace{0.05cm},$$
  \hspace{0.2cm}
+
:$$\alpha_2 = 0.2722 \hspace{0.15cm}{\rm Np}/{{\rm km} \cdot \sqrt{\rm MHz}} \hspace{0.05cm}.$$
  \alpha_2 = 0.2722 \hspace{0.15cm}{\rm Np}/{{\rm km} \cdot \sqrt{\rm MHz}} \hspace{0.05cm}.$$
 
  
Häufig verwendet man zur systemtheoretischen Beschreibung eines linearen zeitinvarianten Systems
+
For the system-theoretical description of a coaxial cable  (German:  "Koaxialkabel"   ⇒   subscipt  "K"),  one uses
  
* die Dämpfungsfunktion (in Np bzw. dB):
+
* the attenuation function  (in Np or dB):
$${\rm a}_{\rm K}(f) = - {\rm ln} \hspace{0.10cm}|H_{\rm K}(f)|= - 20 \cdot {\rm lg} \hspace{0.10cm}|H_{\rm K}(f)|
+
:$${ a}_{\rm K}(f) = - {\rm ln} \hspace{0.10cm}|H_{\rm K}(f)|= - 20 \cdot {\rm lg} \hspace{0.10cm}|H_{\rm K}(f)|
 
     \hspace{0.05cm},$$
 
     \hspace{0.05cm},$$
  
* die Phasenfunktion (in rad bzw. Grad):
+
* the phase function  (in rad or degree):
$$b_{\rm K}(f) = - {\rm arc} \hspace{0.10cm}H_{\rm K}(f)
+
:$$b_{\rm K}(f) = - {\rm arc} \hspace{0.10cm}H_{\rm K}(f)
 
     \hspace{0.05cm}.$$
 
     \hspace{0.05cm}.$$
  
In der Praxis benutzt man häufig die Näherung
+
In practice,  one often uses the approximation
$$H_{\rm K}(f) =
+
:$$H_{\rm K}(f) =
 
   {\rm e}^{- \alpha_2  \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot
 
   {\rm e}^{- \alpha_2  \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot
 
   \sqrt{f}}  \cdot
 
   \sqrt{f}}  \cdot
 
   {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2  \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot
 
   {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2  \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot
   \sqrt{f}}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} a_{\rm K}(f) = \alpha_2  \cdot l \cdot
+
   \sqrt{f}}$$
   \sqrt{f}, \hspace{0.2cm}b_{\rm K}(f) = a_{\rm K}(f) \cdot
+
:$$\Rightarrow \hspace{0.3cm} a_{\rm K}(f) = \alpha_2  \cdot l \cdot
 +
   \sqrt{f}, \hspace{0.8cm}b_{\rm K}(f) = a_{\rm K}(f) \cdot
 
   {\rm rad}/{\rm Np}\hspace{0.05cm}.$$
 
   {\rm rad}/{\rm Np}\hspace{0.05cm}.$$
Dies ist erlaubt, da $\alpha_2$ und $\beta_2$> genau den gleichen Zahlenwert  besitzen und sich nur durch verschiedene Pseudoeinheiten Unterscheiden. Mit der Definition der charakteristischen Kabeldämpfung (in Neper bzw. Dezibel)
+
This is allowed because  $\alpha_2$  and  $\beta_2$  have exactly the same numerical value and differ only by different pseudo units.
$${\rm a}_{\rm \star(Np)} = {\rm a}_{\rm K}(f = {R}/{2}) = 0.1151 \cdot {\rm a}_{\rm \star(dB)}$$
+
 
lassen sich zudem Digitalsysteme mit unterschiedlicher Bitrate $R$ und Kabellänge $l$ einheitlich behandeln.
+
With the definition of the characteristic cable attenuation  (in Neper or decibel)
 +
:$${a}_{\rm \star(Np)} = {a}_{\rm K}(f = {R}/{2}) = 0.1151 \cdot {a}_{\rm \star(dB)}$$
 +
digital systems with different bit rate  $R$  and cable length  $l$  can be treated uniformly.
 +
 
 +
 
 +
 
 +
 
 +
Notes:
 +
*The exercise belongs to the chapter   [[Linear_and_Time_Invariant_Systems/Eigenschaften_von_Koaxialkabeln|Properties of Coaxial Cables]].
 +
 +
*You can use the interactive  "HTML 5/JS" applet  [[Applets:Attenuation_of_Copper_Cables|Applets:Attenuation of Copper Cables]]  to check your results.
  
:<b>Hinweis:</b> Die Aufgabe bezieht sich auf das Kapitel 4.2 dieses Buches. Sie können zur Überprüfung Ihrer Ergebnisse das folgende Interaktionsmodul benutzen:
 
:Dämpfung von Kupferkabeln
 
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Terme von <i>H</i><sub>K</sub>(<i>f</i>) führen zu keinen Verzerrungen? Der
+
{Which terms of &nbsp;$H_{\rm K}(f)$&nbsp; do not lead to distortions? The
 
|type="[]"}
 
|type="[]"}
+ <i>&alpha;</i><sub>0</sub>&ndash;Term,
+
+ $\alpha_0$&ndash;term,
- <i>&alpha;</i><sub>1</sub>&ndash;Term,
+
- $\alpha_1$&ndash;term,
- <i>&alpha;</i><sub>2</sub>&ndash;Term,
+
- $\alpha_2$&ndash;term,
+ <i>&beta;</i><sub>1</sub>&ndash;Term,
+
+ $\beta_1$&ndash;term,
- <i>&beta;</i><sub>2</sub>&ndash;Term,
+
- $\beta_2$&ndash;term.
  
  
{Welche Länge <i>l</i><sub>max</sub> könnte ein solches Kabel besitzen, damit ein Gleichsignal um nicht mehr als 1% gedämpft wird?
+
{What length &nbsp;$l_{\rm max}$&nbsp; could such a cable have so that a DC signal is attenuated by no more than &nbsp;$1\%$&nbsp;?
 
|type="{}"}
 
|type="{}"}
$l_\text{max}$ = { 6.173 3% } $km$
+
$l_\text{max} \ = \ $ { 6.173 3% } $\ \rm km$
  
  
{Welche Dämpfung (in Np) ergibt sich bei der Frequenz <i>f</i> = 70 MHz, wenn die Kabellänge <i>l</i> = 2 km beträgt?
+
{What is the attenuation&nbsp; (in Np)&nbsp; at frequency &nbsp;$f = 70 \ \rm MHz$&nbsp; when the cable length is &nbsp;$\underline{l = 2 \ \rm km}$?
 
|type="{}"}
 
|type="{}"}
$l = 2\ km:\ a_K(f = 70\ MHz)$ = { 4.619 3% } $Np$
+
$a_{\rm K}(f = 70\ \rm MHz) \ = \ $ { 4.619 3% } $\ \rm Np$
  
  
{Welche Dämpfung ergibt sich bei sonst gleichen Voraussetzungen, wenn man nur den <i>&alpha;</i><sub>2</sub>&ndash;Term berücksichtigt?
+
{Assuming all other things are equal,&nbsp; what is the attenuation when only the &nbsp;$\alpha_2$&ndash;term is considered?
 
|type="{}"}
 
|type="{}"}
$nur\ \alpha_2:\ a_K(f = 70\ MHz) $ = { 4.555 3% } $Np$
+
$a_{\rm K}(f = 70\ \rm MHz) \ = \ $ { 4.555 3% } $\ \rm Np$
  
  
{Wie lautet die Formel für die Umrechnung zwischen Np und dB? Welcher dB&ndash;Wert ergibt sich für die unter d) berechnete Dämpfung?
+
{What is the formula for the conversion between &nbsp;$\rm Np$&nbsp; and &nbsp;$\rm dB$? &nbsp;What is the&nbsp;$\rm dB$ value that results for the attenuation calculated in&nbsp; '''(4)'''?
 
|type="{}"}
 
|type="{}"}
$nur\ \alpha_2:\ a_K(f = 70\ MHz) $ = { 39.56 3% } $dB$
+
$a_{\rm K}(f = 70\ \rm MHz) \ = \ $ { 39.56 3% } $\ \rm dB$
  
  
{Welche der Aussagen sind unter der Voraussetzung zutreffend, dass man sich bezüglich der Dämpfungsfunktion auf den <i>&alpha;</i><sub>2</sub>&ndash;Wert beschränkt?
+
{Which statements are true if we restrict ourselves to the &nbsp;$\alpha_2$&ndash;value with respect to the attenuation function?
 
|type="[]"}
 
|type="[]"}
+ Man kann auch auf den Phasenterm mit <i>&beta;</i><sub>1</sub> verzichten.
+
+ One can also do without the phase term with &nbsp;$\beta_1$.
- Man kann auch auf den Phasenterm mit <i>&beta;</i><sub>2</sub> verzichten.
+
- One can also do without the phase term with &nbsp;$\beta_2$.
- a<sub>&#8727;</sub> &asymp; 40 dB gilt für ein System mit <i>R</i> = 70 Mbit/s und <i>l</i> = 2 km.
+
- $a_\star \approx 40 \ \rm dB$&nbsp; holds for a system with &nbsp;$R = 70 \ \rm Mbit/s$&nbsp; and &nbsp;$l = 2 \ \rm  km$.
+ a<sub>&#8727;</sub> &asymp; 40 dB gilt für ein System mit <i>R</i> = 140 Mbit/s und <i>l</i> = 2 km.
+
+ $a_\star \approx 40 \ \rm dB$&nbsp; holds for a system with &nbsp;$R = 140 \ \rm Mbit/s$&nbsp; and &nbsp;$l = 2 \ \rm  km$.
+ a<sub>&#8727;</sub> &asymp; 40 dB gilt für ein System mit <i>R</i> = 560 Mbit/s und <i>l</i> = 1 km.
+
+ $a_\star \approx 40 \ \rm dB$&nbsp; holds for a system with &nbsp;$R = 560 \ \rm Mbit/s$&nbsp;  and &nbsp;$l = 1 \ \rm  km$.
  
  
Line 92: Line 101:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:<b>1.</b>&nbsp;&nbsp;Der <i>&alpha;</i><sub>0</sub>&ndash;Term bewirkt nur eine frequenzunabhängige Dämpfung und der <i>&beta;</i><sub>1</sub>&ndash;Term (lineare Phase) eine frequenzunabhängige Laufzeit. Alle anderen Terme tragen zu den (linearen) Verzerrungen bei &nbsp;&#8658;&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 4</u>.
+
'''(1)'''&nbsp; <u>Solutions 1 and 4</u>&nbsp; are correct:
 +
*The&nbsp; $\alpha_0$&ndash;term causes only a frequency-independent attenuation.
 +
*The&nbsp; $\beta_1$&ndash;term&nbsp; (linear phase)&nbsp; results in a frequency-independent delay.
 +
*All other terms contribute to the&nbsp; (linear)&nbsp; distortions.
  
:<b>2.</b>&nbsp;&nbsp;Mit a<sub>0</sub> = <i>a</i><sub>0</sub> &middot; <i>l</i> muss folgende Gleichung erfüllt sein:
+
 
 +
'''(2)'''&nbsp; With&nbsp; ${\rm a}_0 = \alpha_0 \cdot l$&nbsp; the following equation must be satisfied:
 
:$${\rm e}^{- {\rm a}_0 }  \ge 0.99
 
:$${\rm e}^{- {\rm a}_0 }  \ge 0.99
 
   \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\rm a}_0 < {\rm ln}
 
   \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\rm a}_0 < {\rm ln}
 
   \hspace{0.10cm}\frac{1}{0.99}\approx 0.01\,\,{\rm (Np)}
 
   \hspace{0.10cm}\frac{1}{0.99}\approx 0.01\,\,{\rm (Np)}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
:Damit erhält man für die maximale Kabellänge
+
*This gives the maximum cable length:
 
:$$l_{\rm max} = \frac{{\rm a}_0 }{\alpha_0 }  = \frac{0.01\,\,{\rm Np}}{0.00162\,\,{\rm Np/km}}\hspace{0.15cm}\underline{\approx 6.173\,\,{\rm km}}
 
:$$l_{\rm max} = \frac{{\rm a}_0 }{\alpha_0 }  = \frac{0.01\,\,{\rm Np}}{0.00162\,\,{\rm Np/km}}\hspace{0.15cm}\underline{\approx 6.173\,\,{\rm km}}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
:<b>3.</b>&nbsp;&nbsp;Für den Dämpfungsverlauf gilt bei Berücksichtigung aller Terme:
+
'''(3)'''&nbsp; The following applies to the attenuation curve&nbsp; when all terms are taken into account:
:$$a_{\rm K}(f)  =  [\alpha_0 + \alpha_1  \cdot f + \alpha_2  \cdot
+
:$${a}_{\rm K}(f)  =  [\alpha_0 + \alpha_1  \cdot f + \alpha_2  \cdot
   \sqrt{f}\hspace{0.05cm}] \cdot l = \\
+
   \sqrt{f}\hspace{0.05cm}] \cdot l  
   =  [0.00162 + 0.000435  \cdot 70 + 0.2722  \cdot \sqrt{70}\hspace{0.05cm}]\, \frac{\rm Np}{\rm km} \cdot 2\,{\rm km} = \\
+
   =  \big[0.00162 + 0.000435  \cdot 70 + 0.2722  \cdot \sqrt{70}\hspace{0.05cm}\big]\, \frac{\rm Np}{\rm km} \cdot 2\,{\rm km} $$
  =  [0.003 + 0.061  + 4.555  \hspace{0.05cm}]\, {\rm Np}\hspace{0.15cm}\underline{= 4.619\, {\rm Np}}\hspace{0.05cm}.$$
+
:$$  \Rightarrow \hspace{0.3cm}{a}_{\rm K}(f = 70\ \rm MHz)  \big[0.003 + 0.061  + 4.555  \hspace{0.05cm}\big]\, {\rm Np}\hspace{0.15cm}\underline{= 4.619\, {\rm Np}}\hspace{0.05cm}.$$
  
:<b>4.</b>&nbsp;&nbsp;Entsprechend der Berechnung bei Punkt 3) erhält man hier den Dämpfungswert <u>4.555 Np</u>.
 
  
:<b>5.</b>&nbsp;&nbsp;Für eine jede positive Größe <i>x</i> gilt:
+
'''(4)'''&nbsp; According to the calculation in subtask&nbsp; '''(3)''',&nbsp; the attenuation value&nbsp; ${a}_{\rm K}(f = 70\ \rm MHz)\hspace{0.15cm}\underline{=4.555 \ \rm Np}$ is obtained here.
 +
 
 +
 
 +
'''(5)'''&nbsp; For any positive quantity&nbsp; $x$&nbsp; the following holds:
 
:$$x_{\rm Np} = {\rm ln} \hspace{0.10cm} x =  \frac{{\rm lg} \hspace{0.10cm} x}{{\rm lg} \hspace{0.10cm} {\rm e}}
 
:$$x_{\rm Np} = {\rm ln} \hspace{0.10cm} x =  \frac{{\rm lg} \hspace{0.10cm} x}{{\rm lg} \hspace{0.10cm} {\rm e}}
 
   =  \frac{1}{{20 \cdot \rm lg} \hspace{0.10cm} {\rm e}} \cdot
 
   =  \frac{1}{{20 \cdot \rm lg} \hspace{0.10cm} {\rm e}} \cdot
   (20 \cdot {\rm lg} \hspace{0.10cm} x) = 0.1151 \cdot x_{\rm dB}$$
+
   (20 \cdot {\rm lg} \hspace{0.10cm} x) = 0.1151 \cdot x_{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} x_{\rm dB} = 8.6859 \cdot x_{\rm
:$$\Rightarrow \hspace{0.3cm} x_{\rm dB} = 8.6859 \cdot x_{\rm
 
 
  Np}\hspace{0.05cm}.$$
 
  Np}\hspace{0.05cm}.$$
:Der Dämpfungswert 4.555 Np ist somit identisch mit <u>39.56 dB</u>.
+
The attenuation value&nbsp; $4.555 \ {\rm Np}$&nbsp; is thus identical to&nbsp; ${a}_{\rm K}(f = 70\ \rm MHz)\hspace{0.15cm}\underline{=39.56 \ \rm dB}$.
 +
 
  
:<b>6.</b>&nbsp;&nbsp;Mit der Beschränkung auf den Dämpfungsterm mit <i>&alpha;</i><sub>2</sub> gilt für den Frequenzgang:
+
'''(6)'''&nbsp; <u>Solutions 1, 4 and 5</u> are correct.&nbsp; Explanation:
 +
*With the restriction to the attenuation term with&nbsp; $\alpha_2$,&nbsp; the following applies to the frequency response:
 
:$$H_{\rm K}(f)  =
 
:$$H_{\rm K}(f)  =
 
   {\rm e}^{- \alpha_2  \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot
 
   {\rm e}^{- \alpha_2  \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot
Line 128: Line 144:
 
   {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2  \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot
 
   {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2  \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot
 
   \sqrt{f}}  \hspace{0.05cm}.$$
 
   \sqrt{f}}  \hspace{0.05cm}.$$
:Verzichtet man auf den <i>&beta;</i><sub>1</sub>&ndash;Phasenterm, so ändert sich bezüglich den Verzerrungen nichts. Lediglich die Phasen&ndash; und die Gruppenlaufzeit würden (beide gleich) um den Wert <i>&tau;</i><sub>1</sub> = (<i>&beta;</i><sub>1</sub> &middot; <i>l</i>)/2&pi; kleiner.
+
*If the&nbsp; $\beta_1$&ndash;phase term is omitted,&nbsp; nothing changes with respect to the distortions. &nbsp; Only the phase and group delay would be&nbsp; (both equal)&nbsp; smaller by the value&nbsp; $\tau_1 = (\beta_1 \cdot l)/(2\pi)$.
  
:Verzichtet man auf den <i>&beta;</i><sub>2</sub>&ndash;Term, so ergeben sich dagegen völlig andere Verhältnisse:
+
*If,&nbsp; on the other hand,&nbsp; we omit the&nbsp; $\beta_2$&ndash;term,&nbsp; we obtain completely different conditions:
 
+
::'''(a)''' The frequency response&nbsp; $H_{\rm K}(f)$&nbsp; no longer fulfills the requirement of a causal system;&nbsp; in such a case,&nbsp; $H_{\rm K}(f)$&nbsp; would have to be in minimum phase.
:* Der Frequenzgang <i>H</i><sub>K</sub>(<i>f</i>) erfüllt nun nicht mehr die Voraussetzung eines kausalen Systems; bei einem solchen muss <i>H</i><sub>K</sub>(<i>f</i>) minimalphasig sein.
+
::'''(b)''' The impulse response&nbsp;  $h_{\rm K}(t)$&nbsp; is symmetrical at&nbsp; $t = 0$&nbsp; with real frequency response,&nbsp; which does not correspond to the conditions.
 
+
*Therefore,&nbsp; as an approximation for the coaxial cable frequency response,&nbsp; the following is allowed:
:* Die Impulsantwort <i>h</i><sub>K</sub>(<i>t</i>) ist bei reellem Frequenzgang symmetrisch um <i>t</i> = 0, was nicht den Gegebenheiten entspricht.
+
:$${a}_{\rm K}(f) = \alpha_2  \cdot l \cdot
 
+
   \sqrt{f},$$
:Deshalb ist als eine Näherung für den Koaxialkabelfrequenzgang erlaubt:
+
:$$ b_{\rm K}(f) = a_{\rm K}(f) \cdot
:$$a_{\rm K}(f) = \alpha_2  \cdot l \cdot
 
   \sqrt{f}, \hspace{0.2cm}b_{\rm K}(f) = a_{\rm K}(f) \cdot
 
 
   {\rm rad}/{\rm Np}\hspace{0.05cm}.$$
 
   {\rm rad}/{\rm Np}\hspace{0.05cm}.$$
:Das heißt: a<sub>K</sub>(<i>f</i>) und <i>b</i><sub>K</sub>(<i>f</i>) eines Koaxialkabels sind in erster Näherung formgleich und unterscheiden sich lediglich in ihren Einheiten.
+
*That means:&nbsp; ${a}_{\rm K}(f)$&nbsp; and&nbsp; ${b}_{\rm K}(f)$&nbsp; of a coaxial cable are in first approximation identical in shape and differ only in their units.
  
:Bei einem Digitalsystem mit der Bitrate <i>R</i> = 140 Mbit/s&nbsp;&#8658;&nbsp;<i>R</i>/2 = 70 Mbit/s und der Kabellänge <i>l</i> = 2 km gilt tatsächlich a<sub>&#8727;</sub> &asymp; 40 dB (siehe Musterlösung zur letzten Teilaufgabe). Ein System mit vierfacher Bitrate (<i>R</i>/2 = 280 Mbit/s) und halber Länge (<i>l</i> = 1 km) führt zur gleichen charakteristischen Kabeldämpfung. Dagegen gilt für ein System mit <i>R</i>/2 = 35 Mbit/s und <i>l</i> = 2 km:
+
*For a digital system with bit rate&nbsp; $R = 140 \ \rm Mbit/s$ &nbsp; &#8658; &nbsp; $R/2 = 70 \ \rm Mbit/s$&nbsp; and cable length&nbsp; $l = 2 \ \rm km$&nbsp;, &nbsp; $a_\star \approx 40 \ \rm dB$&nbsp; holds (see solution to the last sub-task).  
:$$a_{\rm dB} = 0.2722 \hspace{0.15cm}\frac {\rm Np}{km \cdot \sqrt{MHz}} \cdot {\rm 2\,km}\cdot\sqrt{\rm 35\,MHz}
+
*A system with four times the bit rate&nbsp; $R/2 = 280 \ \rm Mbit/s$&nbsp; and half the length&nbsp; $(l = 1 \ \rm km)$&nbsp; results in the same characteristic cable attenuation.  
 +
*In contrast,&nbsp; the following holds for a system with&nbsp; $R/2 = 35 \ \rm Mbit/s$&nbsp; and&nbsp; $l = 2 \ \rm km$:
 +
:$${a}_\star = 0.2722 \hspace{0.15cm}\frac {\rm Np}{\rm km \cdot \sqrt{MHz}} \cdot {\rm 2\,km}\cdot\sqrt{\rm 35\,MHz}
 
  \cdot 8.6859 \,\frac {\rm dB}{\rm Np} \approx 28\,{\rm dB}
 
  \cdot 8.6859 \,\frac {\rm dB}{\rm Np} \approx 28\,{\rm dB}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
:Richtig sind somit <u>die Lösungsvorschläge 1, 4 und 5</u>.
+
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^4.2 Koaxialkabel^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^4.2 Coaxial Cable^]]

Latest revision as of 17:21, 12 November 2021

Various coaxial cable types

A so-called normal coaxial cable of length  $l$  with

  • core diameter  $\text{2.6 mm}$,  and
  • outer diameter  $\text{9.5 mm}$


has the following frequency response:

$$H_{\rm K}(f) = {\rm e}^{- \alpha_0 \hspace{0.05cm} \cdot \hspace{0.05cm} l} \cdot {\rm e}^{- \alpha_1 \hspace{0.05cm}\cdot \hspace{0.05cm}l \hspace{0.05cm}\cdot \hspace{0.05cm}f} \cdot {\rm e}^{- \alpha_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot \sqrt{f}} \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_1 \hspace{0.05cm}\cdot \hspace{0.05cm} l \hspace{0.05cm}\cdot \hspace{0.05cm}f} \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot \sqrt{f}} \hspace{0.05cm}.$$

The attenuation parameters  $\alpha_0$,  $\alpha_1$ and  $\alpha_2$ are to be used in  "Neper per kilometer"  (Np/km)  and the phase parameters  $\beta_1$ and  $\beta_2$ in  "Radian per kilometer"  (rad/km).  The following numerical values apply:

$$\alpha_0 = 0.00162 \hspace{0.15cm}{\rm Np}/{\rm km} \hspace{0.05cm},$$
$$\alpha_1 = 0.000435 \hspace{0.15cm} {\rm Np}/{{\rm km} \cdot {\rm MHz}} \hspace{0.05cm},$$
$$\alpha_2 = 0.2722 \hspace{0.15cm}{\rm Np}/{{\rm km} \cdot \sqrt{\rm MHz}} \hspace{0.05cm}.$$

For the system-theoretical description of a coaxial cable  (German:  "Koaxialkabel"   ⇒   subscipt  "K"),  one uses

  • the attenuation function  (in Np or dB):
$${ a}_{\rm K}(f) = - {\rm ln} \hspace{0.10cm}|H_{\rm K}(f)|= - 20 \cdot {\rm lg} \hspace{0.10cm}|H_{\rm K}(f)| \hspace{0.05cm},$$
  • the phase function  (in rad or degree):
$$b_{\rm K}(f) = - {\rm arc} \hspace{0.10cm}H_{\rm K}(f) \hspace{0.05cm}.$$

In practice,  one often uses the approximation

$$H_{\rm K}(f) = {\rm e}^{- \alpha_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot \sqrt{f}} \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot \sqrt{f}}$$
$$\Rightarrow \hspace{0.3cm} a_{\rm K}(f) = \alpha_2 \cdot l \cdot \sqrt{f}, \hspace{0.8cm}b_{\rm K}(f) = a_{\rm K}(f) \cdot {\rm rad}/{\rm Np}\hspace{0.05cm}.$$

This is allowed because  $\alpha_2$  and  $\beta_2$  have exactly the same numerical value and differ only by different pseudo units.

With the definition of the characteristic cable attenuation  (in Neper or decibel)

$${a}_{\rm \star(Np)} = {a}_{\rm K}(f = {R}/{2}) = 0.1151 \cdot {a}_{\rm \star(dB)}$$

digital systems with different bit rate  $R$  and cable length  $l$  can be treated uniformly.



Notes:


Questions

1

Which terms of  $H_{\rm K}(f)$  do not lead to distortions? The

$\alpha_0$–term,
$\alpha_1$–term,
$\alpha_2$–term,
$\beta_1$–term,
$\beta_2$–term.

2

What length  $l_{\rm max}$  could such a cable have so that a DC signal is attenuated by no more than  $1\%$ ?

$l_\text{max} \ = \ $

$\ \rm km$

3

What is the attenuation  (in Np)  at frequency  $f = 70 \ \rm MHz$  when the cable length is  $\underline{l = 2 \ \rm km}$?

$a_{\rm K}(f = 70\ \rm MHz) \ = \ $

$\ \rm Np$

4

Assuming all other things are equal,  what is the attenuation when only the  $\alpha_2$–term is considered?

$a_{\rm K}(f = 70\ \rm MHz) \ = \ $

$\ \rm Np$

5

What is the formula for the conversion between  $\rm Np$  and  $\rm dB$?  What is the $\rm dB$ value that results for the attenuation calculated in  (4)?

$a_{\rm K}(f = 70\ \rm MHz) \ = \ $

$\ \rm dB$

6

Which statements are true if we restrict ourselves to the  $\alpha_2$–value with respect to the attenuation function?

One can also do without the phase term with  $\beta_1$.
One can also do without the phase term with  $\beta_2$.
$a_\star \approx 40 \ \rm dB$  holds for a system with  $R = 70 \ \rm Mbit/s$  and  $l = 2 \ \rm km$.
$a_\star \approx 40 \ \rm dB$  holds for a system with  $R = 140 \ \rm Mbit/s$  and  $l = 2 \ \rm km$.
$a_\star \approx 40 \ \rm dB$  holds for a system with  $R = 560 \ \rm Mbit/s$  and  $l = 1 \ \rm km$.


Solution

(1)  Solutions 1 and 4  are correct:

  • The  $\alpha_0$–term causes only a frequency-independent attenuation.
  • The  $\beta_1$–term  (linear phase)  results in a frequency-independent delay.
  • All other terms contribute to the  (linear)  distortions.


(2)  With  ${\rm a}_0 = \alpha_0 \cdot l$  the following equation must be satisfied:

$${\rm e}^{- {\rm a}_0 } \ge 0.99 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\rm a}_0 < {\rm ln} \hspace{0.10cm}\frac{1}{0.99}\approx 0.01\,\,{\rm (Np)} \hspace{0.05cm}.$$
  • This gives the maximum cable length:
$$l_{\rm max} = \frac{{\rm a}_0 }{\alpha_0 } = \frac{0.01\,\,{\rm Np}}{0.00162\,\,{\rm Np/km}}\hspace{0.15cm}\underline{\approx 6.173\,\,{\rm km}} \hspace{0.05cm}.$$

(3)  The following applies to the attenuation curve  when all terms are taken into account:

$${a}_{\rm K}(f) = [\alpha_0 + \alpha_1 \cdot f + \alpha_2 \cdot \sqrt{f}\hspace{0.05cm}] \cdot l = \big[0.00162 + 0.000435 \cdot 70 + 0.2722 \cdot \sqrt{70}\hspace{0.05cm}\big]\, \frac{\rm Np}{\rm km} \cdot 2\,{\rm km} $$
$$ \Rightarrow \hspace{0.3cm}{a}_{\rm K}(f = 70\ \rm MHz) = \big[0.003 + 0.061 + 4.555 \hspace{0.05cm}\big]\, {\rm Np}\hspace{0.15cm}\underline{= 4.619\, {\rm Np}}\hspace{0.05cm}.$$


(4)  According to the calculation in subtask  (3),  the attenuation value  ${a}_{\rm K}(f = 70\ \rm MHz)\hspace{0.15cm}\underline{=4.555 \ \rm Np}$ is obtained here.


(5)  For any positive quantity  $x$  the following holds:

$$x_{\rm Np} = {\rm ln} \hspace{0.10cm} x = \frac{{\rm lg} \hspace{0.10cm} x}{{\rm lg} \hspace{0.10cm} {\rm e}} = \frac{1}{{20 \cdot \rm lg} \hspace{0.10cm} {\rm e}} \cdot (20 \cdot {\rm lg} \hspace{0.10cm} x) = 0.1151 \cdot x_{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} x_{\rm dB} = 8.6859 \cdot x_{\rm Np}\hspace{0.05cm}.$$

The attenuation value  $4.555 \ {\rm Np}$  is thus identical to  ${a}_{\rm K}(f = 70\ \rm MHz)\hspace{0.15cm}\underline{=39.56 \ \rm dB}$.


(6)  Solutions 1, 4 and 5 are correct.  Explanation:

  • With the restriction to the attenuation term with  $\alpha_2$,  the following applies to the frequency response:
$$H_{\rm K}(f) = {\rm e}^{- \alpha_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot \sqrt{f}} \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_1 \hspace{0.05cm}\cdot \hspace{0.05cm} l \hspace{0.05cm}\cdot f} \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot \sqrt{f}} \hspace{0.05cm}.$$
  • If the  $\beta_1$–phase term is omitted,  nothing changes with respect to the distortions.   Only the phase and group delay would be  (both equal)  smaller by the value  $\tau_1 = (\beta_1 \cdot l)/(2\pi)$.
  • If,  on the other hand,  we omit the  $\beta_2$–term,  we obtain completely different conditions:
(a) The frequency response  $H_{\rm K}(f)$  no longer fulfills the requirement of a causal system;  in such a case,  $H_{\rm K}(f)$  would have to be in minimum phase.
(b) The impulse response  $h_{\rm K}(t)$  is symmetrical at  $t = 0$  with real frequency response,  which does not correspond to the conditions.
  • Therefore,  as an approximation for the coaxial cable frequency response,  the following is allowed:
$${a}_{\rm K}(f) = \alpha_2 \cdot l \cdot \sqrt{f},$$
$$ b_{\rm K}(f) = a_{\rm K}(f) \cdot {\rm rad}/{\rm Np}\hspace{0.05cm}.$$
  • That means:  ${a}_{\rm K}(f)$  and  ${b}_{\rm K}(f)$  of a coaxial cable are in first approximation identical in shape and differ only in their units.
  • For a digital system with bit rate  $R = 140 \ \rm Mbit/s$   ⇒   $R/2 = 70 \ \rm Mbit/s$  and cable length  $l = 2 \ \rm km$ ,   $a_\star \approx 40 \ \rm dB$  holds (see solution to the last sub-task).
  • A system with four times the bit rate  $R/2 = 280 \ \rm Mbit/s$  and half the length  $(l = 1 \ \rm km)$  results in the same characteristic cable attenuation.
  • In contrast,  the following holds for a system with  $R/2 = 35 \ \rm Mbit/s$  and  $l = 2 \ \rm km$:
$${a}_\star = 0.2722 \hspace{0.15cm}\frac {\rm Np}{\rm km \cdot \sqrt{MHz}} \cdot {\rm 2\,km}\cdot\sqrt{\rm 35\,MHz} \cdot 8.6859 \,\frac {\rm dB}{\rm Np} \approx 28\,{\rm dB} \hspace{0.05cm}.$$