Difference between revisions of "Aufgaben:Exercise 4.4: Coaxial Cable - Frequency Response"
m (Guenter moved page Aufgabe 4.4: Koaxialkabel – Frequenzgang to Exercise 4.4: Coaxial Cable - Frequency Response) |
|||
(6 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Properties_of_Coaxial_Cables |
}} | }} | ||
− | [[File:LZI_A_4_4_vers3.png|right|frame| | + | [[File:LZI_A_4_4_vers3.png|right|frame|Various coaxial cable types]] |
− | + | A so-called normal coaxial cable of length $l$ with | |
− | * | + | *core diameter $\text{2.6 mm}$, and |
− | * | + | *outer diameter $\text{9.5 mm}$ |
− | + | has the following frequency response: | |
:$$H_{\rm K}(f) = {\rm e}^{- \alpha_0 \hspace{0.05cm} \cdot \hspace{0.05cm} l} \cdot | :$$H_{\rm K}(f) = {\rm e}^{- \alpha_0 \hspace{0.05cm} \cdot \hspace{0.05cm} l} \cdot | ||
{\rm e}^{- \alpha_1 \hspace{0.05cm}\cdot \hspace{0.05cm}l \hspace{0.05cm}\cdot \hspace{0.05cm}f} \cdot | {\rm e}^{- \alpha_1 \hspace{0.05cm}\cdot \hspace{0.05cm}l \hspace{0.05cm}\cdot \hspace{0.05cm}f} \cdot | ||
Line 17: | Line 17: | ||
{\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot | {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot | ||
\sqrt{f}} \hspace{0.05cm}.$$ | \sqrt{f}} \hspace{0.05cm}.$$ | ||
− | + | The attenuation parameters $\alpha_0$, $\alpha_1$ and $\alpha_2$ are to be used in "Neper per kilometer" (Np/km) and the phase parameters $\beta_1$ and $\beta_2$ in "Radian per kilometer" (rad/km). The following numerical values apply: | |
:$$\alpha_0 = 0.00162 \hspace{0.15cm}{\rm Np}/{\rm km} \hspace{0.05cm},$$ | :$$\alpha_0 = 0.00162 \hspace{0.15cm}{\rm Np}/{\rm km} \hspace{0.05cm},$$ | ||
:$$\alpha_1 = 0.000435 \hspace{0.15cm} {\rm Np}/{{\rm km} \cdot {\rm MHz}} \hspace{0.05cm},$$ | :$$\alpha_1 = 0.000435 \hspace{0.15cm} {\rm Np}/{{\rm km} \cdot {\rm MHz}} \hspace{0.05cm},$$ | ||
:$$\alpha_2 = 0.2722 \hspace{0.15cm}{\rm Np}/{{\rm km} \cdot \sqrt{\rm MHz}} \hspace{0.05cm}.$$ | :$$\alpha_2 = 0.2722 \hspace{0.15cm}{\rm Np}/{{\rm km} \cdot \sqrt{\rm MHz}} \hspace{0.05cm}.$$ | ||
− | + | For the system-theoretical description of a coaxial cable (German: "Koaxialkabel" ⇒ subscipt "K"), one uses | |
− | * | + | * the attenuation function (in Np or dB): |
:$${ a}_{\rm K}(f) = - {\rm ln} \hspace{0.10cm}|H_{\rm K}(f)|= - 20 \cdot {\rm lg} \hspace{0.10cm}|H_{\rm K}(f)| | :$${ a}_{\rm K}(f) = - {\rm ln} \hspace{0.10cm}|H_{\rm K}(f)|= - 20 \cdot {\rm lg} \hspace{0.10cm}|H_{\rm K}(f)| | ||
\hspace{0.05cm},$$ | \hspace{0.05cm},$$ | ||
− | * | + | * the phase function (in rad or degree): |
:$$b_{\rm K}(f) = - {\rm arc} \hspace{0.10cm}H_{\rm K}(f) | :$$b_{\rm K}(f) = - {\rm arc} \hspace{0.10cm}H_{\rm K}(f) | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | In | + | In practice, one often uses the approximation |
:$$H_{\rm K}(f) = | :$$H_{\rm K}(f) = | ||
{\rm e}^{- \alpha_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot | {\rm e}^{- \alpha_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot | ||
Line 41: | Line 41: | ||
\sqrt{f}, \hspace{0.8cm}b_{\rm K}(f) = a_{\rm K}(f) \cdot | \sqrt{f}, \hspace{0.8cm}b_{\rm K}(f) = a_{\rm K}(f) \cdot | ||
{\rm rad}/{\rm Np}\hspace{0.05cm}.$$ | {\rm rad}/{\rm Np}\hspace{0.05cm}.$$ | ||
− | + | This is allowed because $\alpha_2$ and $\beta_2$ have exactly the same numerical value and differ only by different pseudo units. | |
− | + | With the definition of the characteristic cable attenuation (in Neper or decibel) | |
:$${a}_{\rm \star(Np)} = {a}_{\rm K}(f = {R}/{2}) = 0.1151 \cdot {a}_{\rm \star(dB)}$$ | :$${a}_{\rm \star(Np)} = {a}_{\rm K}(f = {R}/{2}) = 0.1151 \cdot {a}_{\rm \star(dB)}$$ | ||
− | + | digital systems with different bit rate $R$ and cable length $l$ can be treated uniformly. | |
− | + | Notes: | |
− | + | *The exercise belongs to the chapter [[Linear_and_Time_Invariant_Systems/Eigenschaften_von_Koaxialkabeln|Properties of Coaxial Cables]]. | |
− | |||
− | |||
− | |||
− | * | ||
− | * | + | *You can use the interactive "HTML 5/JS" applet [[Applets:Attenuation_of_Copper_Cables|Applets:Attenuation of Copper Cables]] to check your results. |
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Which terms of $H_{\rm K}(f)$ do not lead to distortions? The |
|type="[]"} | |type="[]"} | ||
− | + $\alpha_0$– | + | + $\alpha_0$–term, |
− | - $\alpha_1$– | + | - $\alpha_1$–term, |
− | - $\alpha_2$– | + | - $\alpha_2$–term, |
− | + $\beta_1$– | + | + $\beta_1$–term, |
− | - $\beta_2$– | + | - $\beta_2$–term. |
− | { | + | {What length $l_{\rm max}$ could such a cable have so that a DC signal is attenuated by no more than $1\%$ ? |
|type="{}"} | |type="{}"} | ||
$l_\text{max} \ = \ $ { 6.173 3% } $\ \rm km$ | $l_\text{max} \ = \ $ { 6.173 3% } $\ \rm km$ | ||
− | { | + | {What is the attenuation (in Np) at frequency $f = 70 \ \rm MHz$ when the cable length is $\underline{l = 2 \ \rm km}$? |
|type="{}"} | |type="{}"} | ||
$a_{\rm K}(f = 70\ \rm MHz) \ = \ $ { 4.619 3% } $\ \rm Np$ | $a_{\rm K}(f = 70\ \rm MHz) \ = \ $ { 4.619 3% } $\ \rm Np$ | ||
− | { | + | {Assuming all other things are equal, what is the attenuation when only the $\alpha_2$–term is considered? |
|type="{}"} | |type="{}"} | ||
$a_{\rm K}(f = 70\ \rm MHz) \ = \ $ { 4.555 3% } $\ \rm Np$ | $a_{\rm K}(f = 70\ \rm MHz) \ = \ $ { 4.555 3% } $\ \rm Np$ | ||
− | { | + | {What is the formula for the conversion between $\rm Np$ and $\rm dB$? What is the $\rm dB$ value that results for the attenuation calculated in '''(4)'''? |
|type="{}"} | |type="{}"} | ||
$a_{\rm K}(f = 70\ \rm MHz) \ = \ $ { 39.56 3% } $\ \rm dB$ | $a_{\rm K}(f = 70\ \rm MHz) \ = \ $ { 39.56 3% } $\ \rm dB$ | ||
− | { | + | {Which statements are true if we restrict ourselves to the $\alpha_2$–value with respect to the attenuation function? |
|type="[]"} | |type="[]"} | ||
− | + | + | + One can also do without the phase term with $\beta_1$. |
− | - | + | - One can also do without the phase term with $\beta_2$. |
− | - $a_\star \approx 40 \ \rm dB$ | + | - $a_\star \approx 40 \ \rm dB$ holds for a system with $R = 70 \ \rm Mbit/s$ and $l = 2 \ \rm km$. |
− | + $a_\star \approx 40 \ \rm dB$ | + | + $a_\star \approx 40 \ \rm dB$ holds for a system with $R = 140 \ \rm Mbit/s$ and $l = 2 \ \rm km$. |
− | + $a_\star \approx 40 \ \rm dB$ | + | + $a_\star \approx 40 \ \rm dB$ holds for a system with $R = 560 \ \rm Mbit/s$ and $l = 1 \ \rm km$. |
Line 105: | Line 101: | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' <u>Solutions 1 and 4</u> are correct: |
− | * | + | *The $\alpha_0$–term causes only a frequency-independent attenuation. |
− | * | + | *The $\beta_1$–term (linear phase) results in a frequency-independent delay. |
− | * | + | *All other terms contribute to the (linear) distortions. |
− | + | '''(2)''' With ${\rm a}_0 = \alpha_0 \cdot l$ the following equation must be satisfied: | |
− | |||
− | '''(2)''' | ||
:$${\rm e}^{- {\rm a}_0 } \ge 0.99 | :$${\rm e}^{- {\rm a}_0 } \ge 0.99 | ||
\hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\rm a}_0 < {\rm ln} | \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\rm a}_0 < {\rm ln} | ||
\hspace{0.10cm}\frac{1}{0.99}\approx 0.01\,\,{\rm (Np)} | \hspace{0.10cm}\frac{1}{0.99}\approx 0.01\,\,{\rm (Np)} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | * | + | *This gives the maximum cable length: |
:$$l_{\rm max} = \frac{{\rm a}_0 }{\alpha_0 } = \frac{0.01\,\,{\rm Np}}{0.00162\,\,{\rm Np/km}}\hspace{0.15cm}\underline{\approx 6.173\,\,{\rm km}} | :$$l_{\rm max} = \frac{{\rm a}_0 }{\alpha_0 } = \frac{0.01\,\,{\rm Np}}{0.00162\,\,{\rm Np/km}}\hspace{0.15cm}\underline{\approx 6.173\,\,{\rm km}} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | '''(3)''' The following applies to the attenuation curve when all terms are taken into account: | |
− | |||
− | |||
− | '''(3)''' | ||
:$${a}_{\rm K}(f) = [\alpha_0 + \alpha_1 \cdot f + \alpha_2 \cdot | :$${a}_{\rm K}(f) = [\alpha_0 + \alpha_1 \cdot f + \alpha_2 \cdot | ||
\sqrt{f}\hspace{0.05cm}] \cdot l | \sqrt{f}\hspace{0.05cm}] \cdot l | ||
Line 134: | Line 125: | ||
+ | '''(4)''' According to the calculation in subtask '''(3)''', the attenuation value ${a}_{\rm K}(f = 70\ \rm MHz)\hspace{0.15cm}\underline{=4.555 \ \rm Np}$ is obtained here. | ||
− | '''( | + | '''(5)''' For any positive quantity $x$ the following holds: |
− | |||
− | |||
− | |||
− | |||
− | |||
:$$x_{\rm Np} = {\rm ln} \hspace{0.10cm} x = \frac{{\rm lg} \hspace{0.10cm} x}{{\rm lg} \hspace{0.10cm} {\rm e}} | :$$x_{\rm Np} = {\rm ln} \hspace{0.10cm} x = \frac{{\rm lg} \hspace{0.10cm} x}{{\rm lg} \hspace{0.10cm} {\rm e}} | ||
= \frac{1}{{20 \cdot \rm lg} \hspace{0.10cm} {\rm e}} \cdot | = \frac{1}{{20 \cdot \rm lg} \hspace{0.10cm} {\rm e}} \cdot | ||
(20 \cdot {\rm lg} \hspace{0.10cm} x) = 0.1151 \cdot x_{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} x_{\rm dB} = 8.6859 \cdot x_{\rm | (20 \cdot {\rm lg} \hspace{0.10cm} x) = 0.1151 \cdot x_{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} x_{\rm dB} = 8.6859 \cdot x_{\rm | ||
Np}\hspace{0.05cm}.$$ | Np}\hspace{0.05cm}.$$ | ||
− | + | The attenuation value $4.555 \ {\rm Np}$ is thus identical to ${a}_{\rm K}(f = 70\ \rm MHz)\hspace{0.15cm}\underline{=39.56 \ \rm dB}$. | |
− | |||
− | '''(6)''' | + | '''(6)''' <u>Solutions 1, 4 and 5</u> are correct. Explanation: |
− | * | + | *With the restriction to the attenuation term with $\alpha_2$, the following applies to the frequency response: |
:$$H_{\rm K}(f) = | :$$H_{\rm K}(f) = | ||
{\rm e}^{- \alpha_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot | {\rm e}^{- \alpha_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot | ||
Line 158: | Line 144: | ||
{\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot | {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot | ||
\sqrt{f}} \hspace{0.05cm}.$$ | \sqrt{f}} \hspace{0.05cm}.$$ | ||
− | * | + | *If the $\beta_1$–phase term is omitted, nothing changes with respect to the distortions. Only the phase and group delay would be (both equal) smaller by the value $\tau_1 = (\beta_1 \cdot l)/(2\pi)$. |
− | * | + | *If, on the other hand, we omit the $\beta_2$–term, we obtain completely different conditions: |
− | ::'''(a)''' | + | ::'''(a)''' The frequency response $H_{\rm K}(f)$ no longer fulfills the requirement of a causal system; in such a case, $H_{\rm K}(f)$ would have to be in minimum phase. |
− | ::'''(b)''' | + | ::'''(b)''' The impulse response $h_{\rm K}(t)$ is symmetrical at $t = 0$ with real frequency response, which does not correspond to the conditions. |
− | * | + | *Therefore, as an approximation for the coaxial cable frequency response, the following is allowed: |
:$${a}_{\rm K}(f) = \alpha_2 \cdot l \cdot | :$${a}_{\rm K}(f) = \alpha_2 \cdot l \cdot | ||
\sqrt{f},$$ | \sqrt{f},$$ | ||
:$$ b_{\rm K}(f) = a_{\rm K}(f) \cdot | :$$ b_{\rm K}(f) = a_{\rm K}(f) \cdot | ||
{\rm rad}/{\rm Np}\hspace{0.05cm}.$$ | {\rm rad}/{\rm Np}\hspace{0.05cm}.$$ | ||
− | * | + | *That means: ${a}_{\rm K}(f)$ and ${b}_{\rm K}(f)$ of a coaxial cable are in first approximation identical in shape and differ only in their units. |
− | * | + | *For a digital system with bit rate $R = 140 \ \rm Mbit/s$ ⇒ $R/2 = 70 \ \rm Mbit/s$ and cable length $l = 2 \ \rm km$ , $a_\star \approx 40 \ \rm dB$ holds (see solution to the last sub-task). |
− | * | + | *A system with four times the bit rate $R/2 = 280 \ \rm Mbit/s$ and half the length $(l = 1 \ \rm km)$ results in the same characteristic cable attenuation. |
− | * | + | *In contrast, the following holds for a system with $R/2 = 35 \ \rm Mbit/s$ and $l = 2 \ \rm km$: |
:$${a}_\star = 0.2722 \hspace{0.15cm}\frac {\rm Np}{\rm km \cdot \sqrt{MHz}} \cdot {\rm 2\,km}\cdot\sqrt{\rm 35\,MHz} | :$${a}_\star = 0.2722 \hspace{0.15cm}\frac {\rm Np}{\rm km \cdot \sqrt{MHz}} \cdot {\rm 2\,km}\cdot\sqrt{\rm 35\,MHz} | ||
\cdot 8.6859 \,\frac {\rm dB}{\rm Np} \approx 28\,{\rm dB} | \cdot 8.6859 \,\frac {\rm dB}{\rm Np} \approx 28\,{\rm dB} | ||
Line 181: | Line 167: | ||
− | [[Category:Linear and Time-Invariant Systems: Exercises|^4.2 | + | [[Category:Linear and Time-Invariant Systems: Exercises|^4.2 Coaxial Cable^]] |
Latest revision as of 17:21, 12 November 2021
A so-called normal coaxial cable of length $l$ with
- core diameter $\text{2.6 mm}$, and
- outer diameter $\text{9.5 mm}$
has the following frequency response:
- $$H_{\rm K}(f) = {\rm e}^{- \alpha_0 \hspace{0.05cm} \cdot \hspace{0.05cm} l} \cdot {\rm e}^{- \alpha_1 \hspace{0.05cm}\cdot \hspace{0.05cm}l \hspace{0.05cm}\cdot \hspace{0.05cm}f} \cdot {\rm e}^{- \alpha_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot \sqrt{f}} \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_1 \hspace{0.05cm}\cdot \hspace{0.05cm} l \hspace{0.05cm}\cdot \hspace{0.05cm}f} \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot \sqrt{f}} \hspace{0.05cm}.$$
The attenuation parameters $\alpha_0$, $\alpha_1$ and $\alpha_2$ are to be used in "Neper per kilometer" (Np/km) and the phase parameters $\beta_1$ and $\beta_2$ in "Radian per kilometer" (rad/km). The following numerical values apply:
- $$\alpha_0 = 0.00162 \hspace{0.15cm}{\rm Np}/{\rm km} \hspace{0.05cm},$$
- $$\alpha_1 = 0.000435 \hspace{0.15cm} {\rm Np}/{{\rm km} \cdot {\rm MHz}} \hspace{0.05cm},$$
- $$\alpha_2 = 0.2722 \hspace{0.15cm}{\rm Np}/{{\rm km} \cdot \sqrt{\rm MHz}} \hspace{0.05cm}.$$
For the system-theoretical description of a coaxial cable (German: "Koaxialkabel" ⇒ subscipt "K"), one uses
- the attenuation function (in Np or dB):
- $${ a}_{\rm K}(f) = - {\rm ln} \hspace{0.10cm}|H_{\rm K}(f)|= - 20 \cdot {\rm lg} \hspace{0.10cm}|H_{\rm K}(f)| \hspace{0.05cm},$$
- the phase function (in rad or degree):
- $$b_{\rm K}(f) = - {\rm arc} \hspace{0.10cm}H_{\rm K}(f) \hspace{0.05cm}.$$
In practice, one often uses the approximation
- $$H_{\rm K}(f) = {\rm e}^{- \alpha_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot \sqrt{f}} \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot \sqrt{f}}$$
- $$\Rightarrow \hspace{0.3cm} a_{\rm K}(f) = \alpha_2 \cdot l \cdot \sqrt{f}, \hspace{0.8cm}b_{\rm K}(f) = a_{\rm K}(f) \cdot {\rm rad}/{\rm Np}\hspace{0.05cm}.$$
This is allowed because $\alpha_2$ and $\beta_2$ have exactly the same numerical value and differ only by different pseudo units.
With the definition of the characteristic cable attenuation (in Neper or decibel)
- $${a}_{\rm \star(Np)} = {a}_{\rm K}(f = {R}/{2}) = 0.1151 \cdot {a}_{\rm \star(dB)}$$
digital systems with different bit rate $R$ and cable length $l$ can be treated uniformly.
Notes:
- The exercise belongs to the chapter Properties of Coaxial Cables.
- You can use the interactive "HTML 5/JS" applet Attenuation of Copper Cables to check your results.
Questions
Solution
- The $\alpha_0$–term causes only a frequency-independent attenuation.
- The $\beta_1$–term (linear phase) results in a frequency-independent delay.
- All other terms contribute to the (linear) distortions.
(2) With ${\rm a}_0 = \alpha_0 \cdot l$ the following equation must be satisfied:
- $${\rm e}^{- {\rm a}_0 } \ge 0.99 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\rm a}_0 < {\rm ln} \hspace{0.10cm}\frac{1}{0.99}\approx 0.01\,\,{\rm (Np)} \hspace{0.05cm}.$$
- This gives the maximum cable length:
- $$l_{\rm max} = \frac{{\rm a}_0 }{\alpha_0 } = \frac{0.01\,\,{\rm Np}}{0.00162\,\,{\rm Np/km}}\hspace{0.15cm}\underline{\approx 6.173\,\,{\rm km}} \hspace{0.05cm}.$$
(3) The following applies to the attenuation curve when all terms are taken into account:
- $${a}_{\rm K}(f) = [\alpha_0 + \alpha_1 \cdot f + \alpha_2 \cdot \sqrt{f}\hspace{0.05cm}] \cdot l = \big[0.00162 + 0.000435 \cdot 70 + 0.2722 \cdot \sqrt{70}\hspace{0.05cm}\big]\, \frac{\rm Np}{\rm km} \cdot 2\,{\rm km} $$
- $$ \Rightarrow \hspace{0.3cm}{a}_{\rm K}(f = 70\ \rm MHz) = \big[0.003 + 0.061 + 4.555 \hspace{0.05cm}\big]\, {\rm Np}\hspace{0.15cm}\underline{= 4.619\, {\rm Np}}\hspace{0.05cm}.$$
(4) According to the calculation in subtask (3), the attenuation value ${a}_{\rm K}(f = 70\ \rm MHz)\hspace{0.15cm}\underline{=4.555 \ \rm Np}$ is obtained here.
(5) For any positive quantity $x$ the following holds:
- $$x_{\rm Np} = {\rm ln} \hspace{0.10cm} x = \frac{{\rm lg} \hspace{0.10cm} x}{{\rm lg} \hspace{0.10cm} {\rm e}} = \frac{1}{{20 \cdot \rm lg} \hspace{0.10cm} {\rm e}} \cdot (20 \cdot {\rm lg} \hspace{0.10cm} x) = 0.1151 \cdot x_{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} x_{\rm dB} = 8.6859 \cdot x_{\rm Np}\hspace{0.05cm}.$$
The attenuation value $4.555 \ {\rm Np}$ is thus identical to ${a}_{\rm K}(f = 70\ \rm MHz)\hspace{0.15cm}\underline{=39.56 \ \rm dB}$.
(6) Solutions 1, 4 and 5 are correct. Explanation:
- With the restriction to the attenuation term with $\alpha_2$, the following applies to the frequency response:
- $$H_{\rm K}(f) = {\rm e}^{- \alpha_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot \sqrt{f}} \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_1 \hspace{0.05cm}\cdot \hspace{0.05cm} l \hspace{0.05cm}\cdot f} \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot \sqrt{f}} \hspace{0.05cm}.$$
- If the $\beta_1$–phase term is omitted, nothing changes with respect to the distortions. Only the phase and group delay would be (both equal) smaller by the value $\tau_1 = (\beta_1 \cdot l)/(2\pi)$.
- If, on the other hand, we omit the $\beta_2$–term, we obtain completely different conditions:
- (a) The frequency response $H_{\rm K}(f)$ no longer fulfills the requirement of a causal system; in such a case, $H_{\rm K}(f)$ would have to be in minimum phase.
- (b) The impulse response $h_{\rm K}(t)$ is symmetrical at $t = 0$ with real frequency response, which does not correspond to the conditions.
- Therefore, as an approximation for the coaxial cable frequency response, the following is allowed:
- $${a}_{\rm K}(f) = \alpha_2 \cdot l \cdot \sqrt{f},$$
- $$ b_{\rm K}(f) = a_{\rm K}(f) \cdot {\rm rad}/{\rm Np}\hspace{0.05cm}.$$
- That means: ${a}_{\rm K}(f)$ and ${b}_{\rm K}(f)$ of a coaxial cable are in first approximation identical in shape and differ only in their units.
- For a digital system with bit rate $R = 140 \ \rm Mbit/s$ ⇒ $R/2 = 70 \ \rm Mbit/s$ and cable length $l = 2 \ \rm km$ , $a_\star \approx 40 \ \rm dB$ holds (see solution to the last sub-task).
- A system with four times the bit rate $R/2 = 280 \ \rm Mbit/s$ and half the length $(l = 1 \ \rm km)$ results in the same characteristic cable attenuation.
- In contrast, the following holds for a system with $R/2 = 35 \ \rm Mbit/s$ and $l = 2 \ \rm km$:
- $${a}_\star = 0.2722 \hspace{0.15cm}\frac {\rm Np}{\rm km \cdot \sqrt{MHz}} \cdot {\rm 2\,km}\cdot\sqrt{\rm 35\,MHz} \cdot 8.6859 \,\frac {\rm dB}{\rm Np} \approx 28\,{\rm dB} \hspace{0.05cm}.$$