Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 1.2Z: Sets of Digits"

From LNTwww
 
(3 intermediate revisions by 2 users not shown)
Line 2: Line 2:
 
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Set_Theory_Basics}}
 
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Set_Theory_Basics}}
  
[[File:EN_Sto_Z_1_2_neu.png|right|frame|Sets of digits  A,  B,  C]]
+
[[File:EN_Sto_Z_1_2_neu.png|right|frame|Sets of digits:  A,  B,  C]]
 
Let the universal set  G  be the set of all digits between  1  and  9.  Given are the following subsets:
 
Let the universal set  G  be the set of all digits between  1  and  9.  Given are the following subsets:
  
 
:A=[digits
 
:A = \big[\text{digits} \leqslant 3\big],
 
: B = \big[\text{digits divisible by 3}\big],
 
: B = \big[\text{digits divisible by 3}\big],
:$$ C = \big[\text{digits 5, 6, 7, 8}\big],$$
+
:$$ C = \big[\text{digits 5, 6, 7, 8}\big].$$
  
Besides these, let other sets be defined:
+
Besides these,  let other sets be defined:
 
:D = (A \cap \overline B) \cup (\overline A \cap B),
 
:D = (A \cap \overline B) \cup (\overline A \cap B),
 
:E = (A \cup B) \cap (\overline A \cup \overline B),
 
:E = (A \cup B) \cap (\overline A \cup \overline B),
 
:F = (A \cup C) \cap \overline B,
 
:F = (A \cup C) \cap \overline B,
:$$G = (\overline A \cap \overline C) \cup (A \cap B \cap C).$$
+
:$$H = (\overline A \cap \overline C) \cup (A \cap B \cap C).$$
  
 
First consider which digits belong to the sets&nbsp; D,&nbsp; E,&nbsp; F&nbsp; and&nbsp; H&nbsp;  and then answer the following questions. <br>Justify your answers in terms of set theory.
 
First consider which digits belong to the sets&nbsp; D,&nbsp; E,&nbsp; F&nbsp; and&nbsp; H&nbsp;  and then answer the following questions. <br>Justify your answers in terms of set theory.
 
 
 
 
  
  
Line 25: Line 21:
  
 
Hints:
 
Hints:
*The task belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Set_Theory_Basics|Set theory basics]].
+
*The task belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Set_Theory_Basics|Set Theory Basics]].
 
   
 
   
*The topic of this chapter is illustrated with examples in the  (German language)  learning video[[Mengentheoretische_Begriffe_und_Gesetzmäßigkeiten_(Lernvideo)|Mengentheoretische Begriffe und Gesetzmäßigkeiten]] \Rightarrow.
+
*The topic of this chapter is illustrated with examples in the&nbsp; (German language)&nbsp; learning video
 +
 
 +
:[[Mengentheoretische_Begriffe_und_Gesetzmäßigkeiten_(Lernvideo)|Mengentheoretische Begriffe und Gesetzmäßigkeiten]] &nbsp; $\Rightarrow$ &nbsp; "Set Theoretical Concepts and Laws".
  
  
Line 44: Line 42:
 
+ The complementary set to&nbsp; A \cap B \cap C&nbsp; gives the universal set&nbsp; G.
 
+ The complementary set to&nbsp; A \cap B \cap C&nbsp; gives the universal set&nbsp; G.
  
{Which of the following statements is correct?
+
{Which of the following statements are correct?
 
|type="[]"}
 
|type="[]"}
 
+ The complementary sets of&nbsp; D&nbsp; and&nbsp; E&nbsp; are identical.
 
+ The complementary sets of&nbsp; D&nbsp; and&nbsp; E&nbsp; are identical.
+ F&nbsp; is a subset of the complementary set of &nbsp; B.
+
+ F&nbsp; is a subset of the complementary set of&nbsp; B.
 
- The sets&nbsp; B,&nbsp; C&nbsp; and&nbsp; D&nbsp; form a complete system.
 
- The sets&nbsp; B,&nbsp; C&nbsp; and&nbsp; D&nbsp; form a complete system.
 
+ The sets&nbsp; A,&nbsp; C&nbsp; and&nbsp; H&nbsp; form a complete system.
 
+ The sets&nbsp; A,&nbsp; C&nbsp; and&nbsp; H&nbsp; form a complete system.
Line 63: Line 61:
 
: E = (A \cup B) \cap (\overline A \cup \overline B) = (A \cap \overline A) \cup (A \cap \overline B) \cup (\overline A \cap B) \cup (\overline A \cap \overline B) = (A \cap \overline B) \cup (\overline A \cap B) = D = \{1, 2, 6, 9\},
 
: E = (A \cup B) \cap (\overline A \cup \overline B) = (A \cap \overline A) \cup (A \cap \overline B) \cup (\overline A \cap B) \cup (\overline A \cap \overline B) = (A \cap \overline B) \cup (\overline A \cap B) = D = \{1, 2, 6, 9\},
  
:$$F = (A \cup C= \cap \overline B = \{1, 2, 3, 5, 6, 7, 8\} \cap \{1, 2, 4, 5, 7, 8\} = \{1, 2, 5, 7, 8\},$$
+
:$$F = (A \cup C) \cap \overline B = \{1, 2, 3, 5, 6, 7, 8\} \cap \{1, 2, 4, 5, 7, 8\} = \{1, 2, 5, 7, 8\},$$
  
 
:H = (\bar A \cap \overline C) \cup (A \cap B \cap C) = (\overline A \cap \overline C) \cup \phi = \{4, 9\}.
 
:H = (\bar A \cap \overline C) \cup (A \cap B \cap C) = (\overline A \cap \overline C) \cup \phi = \{4, 9\}.
  
'''(1)'''&nbsp; Only the <u>proposed solution 2</u> is correct:
+
'''(1)'''&nbsp; Only the&nbsp; <u>proposed solution 2</u>&nbsp; is correct:
 
* A&nbsp; and&nbsp; C&nbsp; have no common element.
 
* A&nbsp; and&nbsp; C&nbsp; have no common element.
 
* A&nbsp; and&nbsp; B&nbsp; each contain a&nbsp; 3.
 
* A&nbsp; and&nbsp; B&nbsp; each contain a&nbsp; 3.
Line 74: Line 72:
  
  
'''(2)'''&nbsp; Correct is the <u>proposed solution 2</u>:
+
'''(2)'''&nbsp; Correct is the&nbsp; <u>proposed solution 2</u>:
 
*No digit is contained in&nbsp; A,&nbsp; B&nbsp; and&nbsp; C&nbsp; at the same time &nbsp; &rArr; &nbsp;  A \cap B \cap C = \phi &nbsp; &rArr; &nbsp; \overline{A \cap B \cap C} = \overline{\phi} = G.
 
*No digit is contained in&nbsp; A,&nbsp; B&nbsp; and&nbsp; C&nbsp; at the same time &nbsp; &rArr; &nbsp;  A \cap B \cap C = \phi &nbsp; &rArr; &nbsp; \overline{A \cap B \cap C} = \overline{\phi} = G.
*The first proposition, on the other hand, is wrong. It is missing a&nbsp; 4.
+
*The first proposition, on the other hand,&nbsp; is wrong.&nbsp; It is missing a&nbsp; 4.
  
  
  
'''(3)'''&nbsp; Correct are the <u>proposed solution 1,  2 and 4</u>:
+
'''(3)'''&nbsp; Correct are the&nbsp; <u>proposed solutions 1,  2 and 4</u>:
 
*The first proposal is correct: &nbsp; The sets&nbsp; D&nbsp; and&nbsp; E&nbsp; contain exactly the same elements and thus also their complementary sets.
 
*The first proposal is correct: &nbsp; The sets&nbsp; D&nbsp; and&nbsp; E&nbsp; contain exactly the same elements and thus also their complementary sets.
*The second proposal is also correct: &nbsp; In general, i.e. for any&nbsp; X&nbsp; and&nbsp; B&nbsp; the following holds:&nbsp; X \cap \overline B \subset \overline B \ \Rightarrow &nbsp; With X = A \cup C it follows that F \subset \overline B.
+
*The second proposal is also correct: &nbsp; In general, i.e. for any&nbsp; X&nbsp; and&nbsp; B&nbsp; the following holds:&nbsp; $(X \cap \overline B) \subset \overline B \ \Rightarrow &nbsp; With X = A \cup C it follows that F \subset \overline B$.
*The last proposal is also correct: &nbsp; A = \{1, 2, 3\},&nbsp;  C = \{5, 6, 7, 8\}&nbsp; and&nbsp; H = \{4, 9\} form a "complete system".
+
*The last proposal is also correct: &nbsp; A = \{1, 2, 3\},&nbsp;  C = \{5, 6, 7, 8\}&nbsp; and&nbsp; H = \{4, 9\}&nbsp; form a "complete system".
*The third suggestion, on the other hand, is wrong because&nbsp; B&nbsp; and&nbsp; C&nbsp; are not disjoint.
+
*The third suggestion,&nbsp; on the other hand,&nbsp; is wrong because&nbsp; B&nbsp; and&nbsp; C&nbsp; are not disjoint.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Latest revision as of 15:13, 25 November 2021

Sets of digits:  ABC

Let the universal set  G  be the set of all digits between  1  and  9.  Given are the following subsets:

A = \big[\text{digits} \leqslant 3\big],
B = \big[\text{digits divisible by 3}\big],
C = \big[\text{digits 5, 6, 7, 8}\big].

Besides these,  let other sets be defined:

D = (A \cap \overline B) \cup (\overline A \cap B),
E = (A \cup B) \cap (\overline A \cup \overline B),
F = (A \cup C) \cap \overline B,
H = (\overline A \cap \overline C) \cup (A \cap B \cap C).

First consider which digits belong to the sets  DEF  and  H  and then answer the following questions.
Justify your answers in terms of set theory.



Hints:

  • The topic of this chapter is illustrated with examples in the  (German language)  learning video
Mengentheoretische Begriffe und Gesetzmäßigkeiten   \Rightarrow   "Set Theoretical Concepts and Laws".


Questions

1

Which of the following statements are correct?

A  and  B  are disjoint sets.
A  and  C  are disjoint sets.
B  and  C  are disjoint sets.

2

Which of the following statements are correct?

The union  A \cup B \cup C  gives the universal set  G.
The complementary set to  A \cap B \cap C  gives the universal set  G.

3

Which of the following statements are correct?

The complementary sets of  D  and  E  are identical.
F  is a subset of the complementary set of  B.
The sets  BC  and  D  form a complete system.
The sets  AC  and  H  form a complete system.


Solution

For the other sets defined in the problem holds:

D = (A \cap \overline B) \cup (\overline A \cap B) =\big[\{1, 2, 3\} \cap \{1, 2, 4, 5, 7, 8\}\big] \cup \big[\{4, 5, 6, 7, 8, 9\} \cap \{3, 6, 9\}\big] = \{1, 2, 6, 9\},
E = (A \cup B) \cap (\overline A \cup \overline B) = (A \cap \overline A) \cup (A \cap \overline B) \cup (\overline A \cap B) \cup (\overline A \cap \overline B) = (A \cap \overline B) \cup (\overline A \cap B) = D = \{1, 2, 6, 9\},
F = (A \cup C) \cap \overline B = \{1, 2, 3, 5, 6, 7, 8\} \cap \{1, 2, 4, 5, 7, 8\} = \{1, 2, 5, 7, 8\},
H = (\bar A \cap \overline C) \cup (A \cap B \cap C) = (\overline A \cap \overline C) \cup \phi = \{4, 9\}.

(1)  Only the  proposed solution 2  is correct:

  • A  and  C  have no common element.
  • A  and  B  each contain a  3.
  • B  and  C  each contain a  6.


(2)  Correct is the  proposed solution 2:

  • No digit is contained in  AB  and  C  at the same time   ⇒   A \cap B \cap C = \phi   ⇒   \overline{A \cap B \cap C} = \overline{\phi} = G.
  • The first proposition, on the other hand,  is wrong.  It is missing a  4.


(3)  Correct are the  proposed solutions 1, 2 and 4:

  • The first proposal is correct:   The sets  D  and  E  contain exactly the same elements and thus also their complementary sets.
  • The second proposal is also correct:   In general, i.e. for any  X  and  B  the following holds:  (X \cap \overline B) \subset \overline B \ \Rightarrow   With X = A \cup C it follows that F \subset \overline B.
  • The last proposal is also correct:   A = \{1, 2, 3\},  C = \{5, 6, 7, 8\}  and  H = \{4, 9\}  form a "complete system".
  • The third suggestion,  on the other hand,  is wrong because  B  and  C  are not disjoint.