Difference between revisions of "Aufgaben:Exercise 1.2Z: Sets of Digits"

From LNTwww
 
(25 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Mengentheoretische Grundlagen}}
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Set_Theory_Basics}}
  
[[File:P_ID81__Sto_Z_1_2.png|right|]]
+
[[File:EN_Sto_Z_1_2_neu.png|right|frame|Sets of digits:  $A$,  $B$,  $C$]]
Die Grundmenge $G$ sei die Menge aller Ziffern zwischen 1 und 9. Gegeben sind dazu die folgenden Teilmengen:
+
Let the universal set  $G$  be the set of all digits between  $1$  and  $9$.  Given are the following subsets:
  
$$A = [\text{die Ziffern} \leqslant 3],$$
+
:$$A = \big[\text{digits} \leqslant 3\big],$$
$$ B = [\text{die durch 3 teilbaren Ziffern}],$$
+
:$$ B = \big[\text{digits divisible by 3}\big],$$
$$ C = [\text{die Ziffern 5, 6, 7, 8}],$$
+
:$$ C = \big[\text{digits 5, 6, 7, 8}\big].$$
  
Daneben seien noch weitere Mengen definiert:
+
Besides these,  let other sets be defined:
$$D = (A \cap \bar B) \cup (\bar A \cap B),$$
+
:$$D = (A \cap \overline B) \cup (\overline A \cap B),$$
$$E = (A \cup B) \cap (\bar A \cup \bar B), $$
+
:$$E = (A \cup B) \cap (\overline A \cup \overline B), $$
$$F = (A \cup C) \cap \bar B, $$
+
:$$F = (A \cup C) \cap \overline B, $$
$$G = (\bar A \cap \bar C) \cup (A \cap B \cap C).$$
+
:$$H = (\overline A \cap \overline C) \cup (A \cap B \cap C).$$
Überlegen Sie sich zunächst, welche Ziffern zu den Mengen $D$, $E$, $F$ und $H$ gehören und beantworten Sie dann die folgenden Fragen. Begründen Sie Ihre Antworten mengentheoretisch.
+
 
Hinweis: Die Aufgabe bezieht sich auf den Lehrstoff von Kapitel 1.2. Eine Zusammenfassung der theoretischen Grundlagen mit Beispielen bringt das nachfolgende Lernvideo:
+
First consider which digits belong to the sets&nbsp; $D$,&nbsp; $E$,&nbsp; $F$&nbsp; and&nbsp; $H$&nbsp;  and then answer the following questions. <br>Justify your answers in terms of set theory.
===Fragebogen===
+
 
 +
 
 +
 
 +
 
 +
Hints:
 +
*The task belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Set_Theory_Basics|Set Theory Basics]].
 +
 +
*The topic of this chapter is illustrated with examples in the&nbsp;  (German language)&nbsp;  learning video
 +
 
 +
:[[Mengentheoretische_Begriffe_und_Gesetzmäßigkeiten_(Lernvideo)|Mengentheoretische Begriffe und Gesetzmäßigkeiten]] &nbsp; $\Rightarrow$ &nbsp; "Set Theoretical Concepts and Laws".
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche der nachfolgenden Aussagen sind richtig?
+
{Which of the following statements are correct?
 
|type="[]"}
 
|type="[]"}
- $A$ und $B$ sind disjunkte Mengen.
+
- $A$&nbsp; and&nbsp; $B$&nbsp; are disjoint sets.
+ $A$ und $C$ sind disjunkte Mengen.
+
+ $A$&nbsp; and&nbsp; $C$&nbsp; are disjoint sets.
- $B$ und $C$ sind disjunkte Mengen.
+
- $B$&nbsp; and&nbsp; $C$&nbsp; are disjoint sets.
  
{Welche der nachfolgenden Aussagen sind richtig?
+
{Which of the following statements are correct?
 
|type="[]"}
 
|type="[]"}
- Die Vereinigungsmenge $A \cup B \cup C$ ergibt die Grundmenge.
+
- The union&nbsp; $A \cup B \cup C$&nbsp; gives the universal set&nbsp; $G$.
+ Die Komplementärmenge zu $A \cap B \cap C$ ergibt die Grundmenge.
+
+ The complementary set to&nbsp; $A \cap B \cap C$&nbsp; gives the universal set&nbsp; $G$.
  
{Welche der nachfolgenden Aussagen sind richtig?
+
{Which of the following statements are correct?
 
|type="[]"}
 
|type="[]"}
+ Die Komplementärmengen von $D$ und $E$ sind identisch.
+
+ The complementary sets of&nbsp; $D$&nbsp; and&nbsp; $E$&nbsp; are identical.
+ $F$ ist eine Teilmenge der Komplementärmenge von $B$.
+
+ $F$&nbsp; is a subset of the complementary set of&nbsp; $B$.
- Die Mengen $B$, $C$ und $D$ bilden ein vollständiges System.
+
- The sets&nbsp; $B$,&nbsp; $C$&nbsp; and&nbsp; $D$&nbsp; form a complete system.
+ Die Mengen $A$, $C$ und $H$ bilden ein vollständiges System.
+
+ The sets&nbsp; $A$,&nbsp; $C$&nbsp; and&nbsp; $H$&nbsp; form a complete system.
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:Für die weiteren Mengen gilt:
+
For the other sets defined in the problem holds:
 
 
$ D = (A \cap \bar B) \cup (\bar A \cap B) =$
 
 
 
$ =[\{1, 2, 3\} \cap \{1, 2, 4, 5, 7, 8\}] \cup [\{4, 5, 6, 7, 8, 9\} \cap \{3, 6, 9\}] = \{1, 2, 6, 9\}$,
 
 
 
$ E = E = (A \cup B) \cap (\bar A \cup \bar B) = (A \cap \bar A) \cup (A \cap \bar B) \cup (\bar A \cap B) \cup (\bar A \cap \bar B) =$
 
 
 
$= (A \cap \bar B) \cup (\bar A \cap B) = D = \{1, 2, 6, 9\}$,
 
 
 
$F = (A \cup C= \cap \bar B = \{1, 2, 3, 5, 6, 7, 8\} \cap \{1, 2, 4, 5, 7, 8\} = \{1, 2, 5, 7, 8\}$,
 
  
$H = (\bar A \cap \bar C) \cup (A \cap B \cap C) = (\bar A \cap \bar C) \cup \Phi = \{4, 9\}$.
+
:$$ D = (A \cap \overline B) \cup (\overline A \cap B)  
:'''1.''' Der erste Vorschlag (a1) ist falsch: $A$ und $B$ beinhalten jeweils die „3”.
+
=\big[\{1, 2, 3\} \cap \{1, 2, 4, 5, 7, 8\}\big] \cup \big[\{4, 5, 6, 7, 8, 9\} \cap \{3, 6, 9\}\big] = \{1, 2, 6, 9\},$$  
  
(a2) ist richtig: Es liegt kein gemeinsames Element vor.
+
:$$ E = (A \cup B) \cap (\overline A \cup \overline B) = (A \cap \overline A) \cup (A \cap \overline B) \cup (\overline A \cap B) \cup (\overline A \cap \overline B) = (A \cap \overline B) \cup (\overline A \cap B) = D = \{1, 2, 6, 9\},$$
  
(a3) ist falsch: $B$ und $C$ beinhalten jeweils die „6”.
+
:$$F = (A \cup C) \cap \overline B = \{1, 2, 3, 5, 6, 7, 8\} \cap \{1, 2, 4, 5, 7, 8\} = \{1, 2, 5, 7, 8\},$$
:'''2.''' Der erste Vorschlag (b1) ist falsch: Es fehlt die „4”.
 
  
<u>(b2) ist richtig </u>: $ A \cap B \cap C = \Phi$ (keine Ziffer ist gleichzeitig in $A$, $B$ und $C$ enthalten).
+
:$$H = (\bar A \cap \overline C) \cup (A \cap B \cap C) = (\overline A \cap \overline C) \cup \phi = \{4, 9\}.$$
  
Bildung der Komplementärmenge:
+
'''(1)'''&nbsp; Only the&nbsp; <u>proposed solution 2</u>&nbsp; is correct:
 +
* $A$&nbsp; and&nbsp; $C$&nbsp; have no common element.
 +
* $A$&nbsp; and&nbsp; $B$&nbsp; each contain a&nbsp; $3$.
 +
* $B$&nbsp; and&nbsp; $C$&nbsp; each contain a&nbsp; $6$.
  
$ \overline{A \cap B \cap C} = \bar \Phi = G$.
 
:'''3.''' Der <u>erste Vorschlag (c1) ist richtig</u>: Die Mengen $D$ und $E$ enthalten genau die gleichen Elemente und somit auch deren Komplementärmengen.
 
  
(c2) ist richtig: Allgemein, das heißt für beliebige $X$ und $B$ gilt:
 
  
$X \cap \bar B \subset \bar B \Rightarrow$ Mit $X = A \cup C$ folgt somit $F \subset \bar B$
+
'''(2)'''&nbsp; Correct is the&nbsp; <u>proposed solution 2</u>:
 +
*No digit is contained in&nbsp; $A$,&nbsp; $B$&nbsp; and&nbsp; $C$&nbsp; at the same time &nbsp; &rArr; &nbsp;  $ A \cap B \cap C = \phi$ &nbsp; &rArr; &nbsp; $ \overline{A \cap B \cap C} = \overline{\phi} = G$.
 +
*The first proposition, on the other hand,&nbsp; is wrong.&nbsp; It is missing a&nbsp; $4$.
  
(c3) ist falsch: Beispielsweise sind $B$ und $C$ nicht disjunkt.
 
  
(c4) ist richtig:
 
  
$A = \{1, 2, 3\},$         $C = \{5, 6, 7, 8\},$         $H = \{4, 9\}.$
+
'''(3)'''&nbsp; Correct are the&nbsp; <u>proposed solutions 1,  2 and 4</u>:
 +
*The first proposal is correct: &nbsp; The sets&nbsp; $D$&nbsp; and&nbsp; $E$&nbsp; contain exactly the same elements and thus also their complementary sets.
 +
*The second proposal is also correct: &nbsp; In general, i.e. for any&nbsp; $X$&nbsp; and&nbsp; $B$&nbsp; the following holds:&nbsp; $(X \cap \overline B) \subset \overline B \ \Rightarrow$ &nbsp; With $X = A \cup C$ it follows that $F \subset \overline B$.
 +
*The last proposal is also correct: &nbsp; $A = \{1, 2, 3\},$&nbsp;  $C = \{5, 6, 7, 8\}$&nbsp; and&nbsp; $H = \{4, 9\}$&nbsp; form a "complete system".
 +
*The third suggestion,&nbsp; on the other hand,&nbsp; is wrong because&nbsp; $B$&nbsp; and&nbsp; $C$&nbsp; are not disjoint.
  
Richtig sind also die Vorschläge 1, 2 und 4.
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Stochastische Signaltheorie|^1.2 Mengentheoretische Grundlagen
+
[[Category:Theory of Stochastic Signals: Exercises|^1.2 Set Theory Basics
 
^]]
 
^]]

Latest revision as of 14:13, 25 November 2021

Sets of digits:  $A$,  $B$,  $C$

Let the universal set  $G$  be the set of all digits between  $1$  and  $9$.  Given are the following subsets:

$$A = \big[\text{digits} \leqslant 3\big],$$
$$ B = \big[\text{digits divisible by 3}\big],$$
$$ C = \big[\text{digits 5, 6, 7, 8}\big].$$

Besides these,  let other sets be defined:

$$D = (A \cap \overline B) \cup (\overline A \cap B),$$
$$E = (A \cup B) \cap (\overline A \cup \overline B), $$
$$F = (A \cup C) \cap \overline B, $$
$$H = (\overline A \cap \overline C) \cup (A \cap B \cap C).$$

First consider which digits belong to the sets  $D$,  $E$,  $F$  and  $H$  and then answer the following questions.
Justify your answers in terms of set theory.



Hints:

  • The topic of this chapter is illustrated with examples in the  (German language)  learning video
Mengentheoretische Begriffe und Gesetzmäßigkeiten   $\Rightarrow$   "Set Theoretical Concepts and Laws".


Questions

1

Which of the following statements are correct?

$A$  and  $B$  are disjoint sets.
$A$  and  $C$  are disjoint sets.
$B$  and  $C$  are disjoint sets.

2

Which of the following statements are correct?

The union  $A \cup B \cup C$  gives the universal set  $G$.
The complementary set to  $A \cap B \cap C$  gives the universal set  $G$.

3

Which of the following statements are correct?

The complementary sets of  $D$  and  $E$  are identical.
$F$  is a subset of the complementary set of  $B$.
The sets  $B$,  $C$  and  $D$  form a complete system.
The sets  $A$,  $C$  and  $H$  form a complete system.


Solution

For the other sets defined in the problem holds:

$$ D = (A \cap \overline B) \cup (\overline A \cap B) =\big[\{1, 2, 3\} \cap \{1, 2, 4, 5, 7, 8\}\big] \cup \big[\{4, 5, 6, 7, 8, 9\} \cap \{3, 6, 9\}\big] = \{1, 2, 6, 9\},$$
$$ E = (A \cup B) \cap (\overline A \cup \overline B) = (A \cap \overline A) \cup (A \cap \overline B) \cup (\overline A \cap B) \cup (\overline A \cap \overline B) = (A \cap \overline B) \cup (\overline A \cap B) = D = \{1, 2, 6, 9\},$$
$$F = (A \cup C) \cap \overline B = \{1, 2, 3, 5, 6, 7, 8\} \cap \{1, 2, 4, 5, 7, 8\} = \{1, 2, 5, 7, 8\},$$
$$H = (\bar A \cap \overline C) \cup (A \cap B \cap C) = (\overline A \cap \overline C) \cup \phi = \{4, 9\}.$$

(1)  Only the  proposed solution 2  is correct:

  • $A$  and  $C$  have no common element.
  • $A$  and  $B$  each contain a  $3$.
  • $B$  and  $C$  each contain a  $6$.


(2)  Correct is the  proposed solution 2:

  • No digit is contained in  $A$,  $B$  and  $C$  at the same time   ⇒   $ A \cap B \cap C = \phi$   ⇒   $ \overline{A \cap B \cap C} = \overline{\phi} = G$.
  • The first proposition, on the other hand,  is wrong.  It is missing a  $4$.


(3)  Correct are the  proposed solutions 1, 2 and 4:

  • The first proposal is correct:   The sets  $D$  and  $E$  contain exactly the same elements and thus also their complementary sets.
  • The second proposal is also correct:   In general, i.e. for any  $X$  and  $B$  the following holds:  $(X \cap \overline B) \subset \overline B \ \Rightarrow$   With $X = A \cup C$ it follows that $F \subset \overline B$.
  • The last proposal is also correct:   $A = \{1, 2, 3\},$  $C = \{5, 6, 7, 8\}$  and  $H = \{4, 9\}$  form a "complete system".
  • The third suggestion,  on the other hand,  is wrong because  $B$  and  $C$  are not disjoint.