Difference between revisions of "Aufgaben:Exercise 1.3: Fictional University Somewhere"

From LNTwww
 
(21 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Mengentheoretische Grundlagen
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Set_Theory_Basics
 
}}
 
}}
  
[[File:P_ID89__Sto_A_1_3.png|right|Fiktive Universität Irgendwo ]]
+
[[File:P_ID89__Sto_A_1_3.png|right|frame|Fictional University Somewhere]]
Aus nebenstehender Grafik können Sie einige Informationen über die FUI (''Fiktive Universität Irgendwo'') ablesen. Das gesamte Quadrat steht für die Grundmenge $G$ der 960 Studierenden. Von diesen sind
+
From the adjacent graph you can read some information about  $\rm FUS$  ("Fictional University Somewhere").  The whole square represents the universal set  $G$  of  $960$  students.  Of these
*25% weiblich (Menge $W$, violettes Rechteck),
+
*$25\%$  female  (German:  "weiblich")   (set  $W$,   purple rectangle),
*75% männlich (Menge $M$, gelbes Rechteck).
+
*$75\%$  male  (German:  "männlich")   (set  $M$,  yellow rectangle).
  
An der Universität gibt es die Fakultäten für
 
*Theologie (Menge $T$, schwarzes Dreieck),
 
*Informationstechnik (Menge $I$, blaues Dreieck),
 
*Betriebswirtschaft (Menge $B$, grünes Viereck).
 
  
Jeder Studierende muss mindestens einer dieser Fakultäten zugeordnet sein, kann jedoch auch gleichzeitig zwei oder drei Fakultäten angehören.
+
At the university there are the faculties of
 +
*Theology  (set  $T$,nbsp; black triangle),
 +
*Information Technology  (set  $I$,nbsp; blue triangle),
 +
*Business Administration  (set  $B$,nbsp; green rectangle).
  
Die Flächen in der obigen Darstellung sind maßstäblich, so dass Sie anhand der angegebenen Zahlenwerte und einfachen geometrischen Überlegungen die (prozentualen) Belegungszahlen leicht angeben können.
 
  
''Hinweise:''
+
Each student must be assigned to at least one of these faculties,nbsp; but can belong to two or three faculties at the same time.
*Die Aufgabe gehört zum  Kapitel [[Stochastische_Signaltheorie/Mengentheoretische_Grundlagen|Mengentheoretische Grundlagen]].
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
*Eine Zusammenfassung der theoretischen Grundlagen mit Beispielen bringt das nachfolgende Lernvideo:
 
:[[Mengentheoretische Begriffe und Gesetzmäßigkeiten]]
 
  
  
===Fragebogen===
+
 
 +
 
 +
 
 +
Hints:
 +
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Set_Theory_Basics|Set Theory Basics]].
 +
*The topic of this chapter is illustrated with examples in the   (German language)   learning video
 +
:[[Mengentheoretische_Begriffe_und_Gesetzmäßigkeiten_(Lernvideo)|Mengentheoretische Begriffe und Gesetzmäßigkeiten]]   $\Rightarrow$   "Set Theoretical Concepts and Laws".
 +
*The areas in the above diagram are to scale,  so you can easily give the  (percentage)  occupancy figures using the numerical values given and simple geometric considerations.
 +
 
 +
 
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
  
{Berechnen Sie die Anzahl der in den Fakultäten Immatrikulierten. Geben Sie zur Kontrolle die Studierendenzahl in der theologischen Fakultät ein.
+
{Calculate the number of students enrolled in the faculties.&nbsp; As a check,&nbsp; enter the number of students in the Faculty of Theology&nbsp; $(N_{\rm T})$.
 
|type="{}"}
 
|type="{}"}
$N_T$ = { 270 3% }
+
$N_{\rm T} \ = \ $ { 270 3% }
  
  
{Welche der nachfolgenden Aussagen sind zutreffend?
+
{Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
- $I$ ist eine Teilmenge von $M$.
+
- $I$&nbsp; is a subset of&nbsp; $M$.
+ $W$ ist eine Teilmenge von $B$.
+
+ $W$&nbsp; is a subset of&nbsp; $B$.
+ $W$ und $M$ ergeben zusammen ein vollständiges System.
+
+ $W$&nbsp; and&nbsp; $M$&nbsp; together form a&nbsp; "complete system".
- $B$, $I$ und $T$ ergeben zusammen ein vollständiges System.
+
- $B$,&nbsp; $I$&nbsp; and&nbsp; $T$&nbsp; together form a&nbsp; "complete system".
+ $W$ und $T$ sind disjunkte Mengen.
+
+ $W$&nbsp; and&nbsp; $T$&nbsp; are disjoint sets.
+ Die Vereinigungsmenge von $B$, $I$ und $T$ ergibt die Grundmenge.
+
+ The union of&nbsp; $B$,&nbsp; $I$&nbsp; and&nbsp; $T$&nbsp; gives the universal set&nbsp; $G$.
- Die Schnittmenge von $B$, $I$ und $T$ ergibt die leere Menge.
+
- The intersection of&nbsp; $B$,&nbsp; $I$&nbsp; and &nbsp;$T$&nbsp; gives the empty set&nbsp; $\phi$.
  
  
{Wie groß ist der IT-Studentinnen-Anteil bezogen auf alle Studierenden?
+
{What is the proportion of female IT students relative to all students?
 
|type="{}"}
 
|type="{}"}
'''Pr[IT-Studentin]''' = { 0.0313 3% }
+
$\text{Pr}\big[\text{female IT student}\big] \ = \ $ { 3.13 3% } $\ \%$
  
  
{Wie groß ist der Anteil der Studentinnen mit nur einem Studienfach?
+
{What is the proportion of students with only one field of study?
 
|type="{}"}
 
|type="{}"}
'''Pr[ein Studienfach]''' = { 0.4843 3% }
+
$\text{Pr}\big[\text{one field of study}\big] \ = \ $ { 48.43 3% } $\ \%$
  
  
{Wie groß ist der Anteil der Studierenden mit drei Studienfächern?
+
{What is the percentage of students with three fields of study?
 
|type="{}"}
 
|type="{}"}
'''Pr[drei Studienfach]''' = { 0.0156 3% }
+
$\text{Pr}\big[\text{three fields of study}\big] \ = \ $  { 1.56 3% } $\ \%$
  
  
{Wie groß ist der Anteil der Studierenden mit zwei Studienfächern?
+
{What is the percentage of students with two fields of study?
 
|type="{}"}
 
|type="{}"}
'''Pr[zwei Studienfächer]''' = { 0.5 3% }
+
$\text{Pr}\big[\text{two fields of study}\big] \ = \ $ { 50 3% } $\ \%$
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
'''1.''' Aus einfachen geometrischen Überlegungen kommt man zu den Ergebnissen:
+
'''(1)'''&nbsp; From simple geometric considerations,&nbsp; we arrive at the results:
 +
 
 +
:$${\rm Pr}(B) = 3/4 \cdot 1 = 3/4\hspace{0.3cm}(\text{absolute:}\ 720),$$
 +
 
 +
:$${\rm Pr}(I) =  {1}/{2}\cdot 1\cdot  1 = 1/2\hspace{0.3cm}(\text{absolute:} \ 480),$$
 +
 
 +
:$${\rm Pr}(T) = {1}/{2} \cdot {3}/{4} \cdot {3}/{4} = {9}/{32} \hspace{0.3cm}(\text{absolute:}\ 270)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}N_{\rm T} \;\underline{= 270}.$$
 +
 
  
$Pr(B) = 0.75 * 1 = 0.75\qquad(absolut\ 720),$
+
'''(2)'''&nbsp; <u>Proposed solutions 2, 3, 5 and 6</u>&nbsp; are correct &nbsp; ⇒  &nbsp; proposed solutions 1, 4, 7 are consequently incorrect:
 +
*There are also female IT students,&nbsp; although very few.
 +
*The union of&nbsp; $B$,&nbsp; $I$&nbsp; and&nbsp; $T$&nbsp; gives the universal set,&nbsp; but not a complete system&nbsp; (not all combinations of&nbsp; $B$,&nbsp; $I$&nbsp; and&nbsp; $T$&nbsp; are disjoint).
 +
*For the same reason,&nbsp; the intersection of&nbsp; $B$,&nbsp; $I$&nbsp; and&nbsp; $T$&nbsp; does not yield the empty set.
  
$Pr(I) =  \frac{1}{2}*1*1 = 0.50\qquad(absolut\ 480),$
 
  
$Pr(T) = \frac{1}{2} * \frac{3}{4} * \frac{3}{4} = \frac{9}{32} \qquad(absolut\ 270) \qquad \Rightarrow N_T = 270$
+
[[File:P_ID181__Sto_A_1_3_d_neu.png|right|frame|Geometric solution of a probability problem]]
 +
'''(3)'''&nbsp; In set theory,&nbsp; an IT student is the intersection of&nbsp; $I$&nbsp; and&nbsp; $W$&nbsp; <br>(shown as a shaded area in the upper left of the graph):
  
'''2.''' <u>Richtig sind die Lösungsvorschläge 2, 3, 5 und 6</u>  ⇒  die Lösungsvorschläge 1, 4, 7 sind falsch: Es gibt auch IT-Studentinnen, wenn auch nur sehr wenige. Die Vereinigungsmenge von $B$, $I$ und $T$ ergibt zwar die Grundmenge, aber kein vollständiges System, da nicht alle Kombinationen von $B$, $I$ und $T$ zueinander disjunkt sind.
+
:$$\text{Pr[female IT student] = Pr}(I \cap W) = {1}/{2}\cdot {1}/{4} \cdot {1}/{4} = {1}/{32} \hspace{0.15cm}\underline { \thickapprox 3.13 \%}.$$
  
'''3.'''[[File:P_ID181__Sto_A_1_3_d_neu.png|frame|]]
+
In words,&nbsp; there are&nbsp; $30$&nbsp; female IT students among the&nbsp; $960$&nbsp; students.
Eine IT-Studentin ist mengentheoretisch die Schnittmenge aus $I$ und $W$ (rechts dargestellt als schraffierte Fläche):
 
  
$Pr[IT-Studentin] = Pr(I \cap W) =$
 
  
$= \frac{1}{2} * \frac{1}{4} * \frac{1}{4} = \frac{1}{32} \thickapprox 0.0313.$
 
  
In Worten: Unter den 960 Studierenden gibt es 30 IT–Studentinnen.
+
'''(4)'''&nbsp; The probability can be calculated as the sum of three individual probabilities:
 +
:$$ \text{Pr[one field of study]  =  Pr}( \overline{B} \cap \overline{I} \cap T) +  {\rm Pr}( \overline{B} \cap I \cap \overline{T}) +  {\rm Pr}( \it B \cap \overline{I} \cap \overline{T}).$$
  
 +
*Each individual probability corresponds to an area in the Venn diagram and can be determined by addition or subtraction of triangles or rectangles (see graph):
 +
:$$p_1 = {\rm Pr}( \overline{B} \cap \overline{I} \cap T) = {\rm Triangle\ (ABC)}= \frac{1}{2}\hspace{0.02cm} \cdot \hspace{0.02cm}\frac{1}{4}\hspace{0.02cm}\cdot \hspace{0.02cm}\frac{1}{4}= \frac{1}{32}\hspace{0.1cm}\underline{\approx 0.0313},$$
 +
:$$p_2 ={\rm Pr}( \overline{B} \cap I \cap \overline{T}) =  {\rm Rectangle\hspace{0.1cm}(DEFG)}= \frac{1}{4}\hspace{0.02cm}\cdot \hspace{0.02cm}  \frac{1}{4}\hspace{0.02cm}+ \hspace{0.02cm}\frac{1}{2}\hspace{0.02cm}\cdot \hspace{0.02cm} \frac{1}{4}\hspace{0.02cm}\cdot \hspace{0.02cm} \frac{1}{4} = \frac{3}{32}\hspace{0.1cm}\underline{\approx 0.0938},$$
  
 +
:$$p_3 = {\rm Triangle\hspace{0.1cm}(HIC)}- {\rm Triangle\hspace{0.1cm}(KJC)} ={1}/{2}\hspace{0.1cm} \cdot \hspace{0.1cm} 1 \hspace{0.1cm} \cdot \hspace{0.1cm} 1 \hspace{0.1cm} -  \hspace{0.1cm}{1}/{2}\hspace{0.05cm} \cdot \hspace{0.1cm} {3}/{4} \cdot  {3}/{8} =  {23}/{64}.$$
  
 +
&nbsp;$\text{Or:}\hspace{0.3cm}$
  
 +
:$$p_3 = {\rm Pr}( B \cap \overline{I} \cap \overline{T}) ={\rm Rectangle\hspace{0.1cm}(HIJK)}= {\rm Triangle\hspace{0.1cm}(HLK)}- {\rm Triangle\hspace{0.1cm}(ILJ)} = \frac{1}{2}\hspace{0.02cm} \cdot \hspace{0.02cm} \frac{5}{4}\hspace{0.02cm} \cdot \hspace{0.02cm} \frac{5}{8}\hspace{0.02cm} -  \hspace{0.02cm}\frac{1}{2}\hspace{0.02cm} \cdot \hspace{0.02cm} \frac{1}{4} \cdot  \frac{1}{4} =  \frac{23}{64}\hspace{0.1cm}\underline{\approx 0.3594}.$$
  
:<br><br><br><br><br>
+
*The sum of these three probabilities leads to the final result&nbsp; $ \text{Pr[one field of study] } = 31/64 \;\underline {\approx 48.43 \%}$.
<b>'''4.'''</b>&nbsp;&nbsp;Die Wahrscheinlichkeit ist als Summe dreier Einzelwahrscheinlichkeiten berechenbar:
 
$ Pr[ein\ Studienfach] =   Pr(\it \overline{B} \cap \overline{I} \cap T) +  Pr( \it \overline{B} \cap I \cap \overline{T}) + Pr( \it B \cap \overline{I} \cap \overline{T}) =  p_{1} + p_{2}+ p_{3}$.
 
  
Jede einzelne Wahrscheinlichkeit entspricht einer Fl&auml;che im Venndiagramm und kann durch Addition bzw. Subraktion von Dreiecken oder Rechtecken bestimmt werden (siehe obiges Bild):
 
$$p_1 = {\rm Dreieck\ (ABC)}= \frac{1}{2}\hspace{0.1cm} \cdot \hspace{0.1cm}\frac{1}{4}\hspace{0.1cm}\cdot \hspace{0.1cm}\frac{1}{4}= \frac{1}{32}\hspace{0.15cm}\underline{\approx 0.0313},$$
 
$$p_2 = {\rm Viereck\hspace{0.1cm}(DEFG)}= \frac{1}{4}\hspace{0.1cm}\cdot \hspace{0.1cm}  \frac{1}{4}\hspace{0.1cm}+ \hspace{0.1cm}\frac{1}{2}\hspace{0.1cm}\cdot \hspace{0.1cm} \frac{1}{4}\hspace{0.1cm}\cdot \hspace{0.1cm} \frac{1}{4} = \frac{3}{32}\hspace{0.15cm}\underline{\approx 0.0938},$$
 
  
$$p_3 = {\rm Viereck\hspace{0.1cm}(HIJK)}= {\rm Dreieck\hspace{0.1cm}(HLK)}- {\rm Dreieck\hspace{0.1cm}(ILJ)}$$
 
$$ = \frac{1}{2}\hspace{0.1cm} \cdot \hspace{0.1cm} \frac{5}{4}\hspace{0.1cm} \cdot \hspace{0.1cm} \frac{5}{8}\hspace{0.1cm} -  \hspace{0.1cm}\frac{1}{2}\hspace{0.05cm} \cdot \hspace{0.1cm} \frac{1}{4} \cdot  \frac{1}{4} =  \frac{23}{64}\hspace{0.15cm}\underline{\approx 0.3594}.$$
 
  
${\rm Oder}\hspace{0.3cm}p_3 = {\rm Dreieck\hspace{0.1cm}(HIC)}- {\rm Dreieck\hspace{0.1cm}(KJC)} \\ = \frac{1}{2}\hspace{0.1cm} \cdot \hspace{0.1cm} 1 \hspace{0.1cm} \cdot \hspace{0.1cm} 1 \hspace{0.1cm} -  \hspace{0.1cm}\frac{1}{2}\hspace{0.05cm} \cdot \hspace{0.1cm} \frac{3}{4} \cdot  \frac{3}{8} =  \frac{23}{64}.$
+
'''(5)'''&nbsp; This probability is expressed by the triangle&nbsp; $\text{Triangle(AGK)}$&nbsp;.&nbsp; This has the area
 +
:$$\text{Pr[three fields of study]} = {1}/{2}\cdot {1}/{4}\cdot {1}/{8} = {1}/{64}\hspace{0.15cm}\underline{\approx 1.56 \%}.$$
  
Die Summe dieser drei Wahrscheinlichkeiten führt zum <u>Endergebnis 31/64 &asymp; 0.4843</u>.
 
:'''5.''' &nbsp;&nbsp;Diese Wahrscheinlichkeit wird durch das Dreieck (AGK) ausgedr&uuml;ckt. Dieses hat die Fl&auml;che
 
$$\rm Pr[drei\hspace{0.1cm}Studienf\ddot{a}cher] = \frac{1}{2}\cdot\frac{1}{4}\cdot\frac{1}{8} = \frac{1}{64}\hspace{0.15cm}\underline{\approx 0.0156}.$$
 
:'''6.''' &nbsp;&nbsp;Die drei Ereignisse
 
  
*&bdquo;nur ein Studienfach&rdquo;,
 
  
*&bdquo;zwei Studienf&auml;cher&rdquo;,
+
'''(6)'''&nbsp; The three events
 +
* "only one field of study",  
 +
*"two fields of study" and
 +
*"three fields of study"
  
*&bdquo;drei Studienf&auml;cher&rdquo;
 
  
bilden ein vollst&auml;ndiges System. Damit erh&auml;lt man mit den Ergebnissen der letzten Teilaufgaben:
+
form a complete system.&nbsp; Thus,&nbsp; using the results of the last subtasks,&nbsp; we obtain:
$$\rm Pr[zwei\hspace{0.1cm}Studienf\ddot{a}cher] = 1- \rm Pr(1) - \rm Pr(3) = 1- \frac{31}{64} - \frac{1}{64} \hspace{0.15cm}\underline{= 0.5}.$$
+
:$$\text{Pr[two fields of study]} = 1- \text{Pr[one field of study] } - \text{[three fields of study]}= 1- {31}/{64} - {1}/{64} \hspace{0.15cm}\underline{= 50\%}.$$
Zum genau gleichen Ergebnis &ndash; aber mit deutlich mehr Aufwand &ndash; k&auml;me man auf dem direkten Weg entsprechend:
+
One would arrive at exactly the same result &ndash; but with considerably more effort &ndash; in the direct way accordingly:
$$\rm Pr[zwei\hspace{0.1cm}Studienf\ddot{a}cher] = Pr(\it B\cap I \cap\overline{T}) + \rm Pr(\it B\cap\overline{I}\cap{T}) + \rm Pr(\it\overline{B}\cap I \cap T).$$
+
:$$\text{Pr[two fields of study]} = {\rm Pr}(B\cap I \cap\overline{T}) + {\rm Pr}(B\cap\overline{I}\cap{T}) + {\rm Pr}(\overline{B}\cap I \cap T).$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Stochastische Signaltheorie|^1.2 Mengentheoretische Grundlagen^]]
+
[[Category:Theory of Stochastic Signals: Exercises|^1.2 Set Theory Basics^]]

Latest revision as of 15:09, 25 November 2021

Fictional University Somewhere

From the adjacent graph you can read some information about  $\rm FUS$  ("Fictional University Somewhere").  The whole square represents the universal set  $G$  of  $960$  students.  Of these

  • $25\%$  female  (German:  "weiblich")   (set  $W$,  purple rectangle),
  • $75\%$  male  (German:  "männlich")   (set  $M$,  yellow rectangle).


At the university there are the faculties of

  • Theology  (set  $T$,nbsp; black triangle),
  • Information Technology  (set  $I$,nbsp; blue triangle),
  • Business Administration  (set  $B$,nbsp; green rectangle).


Each student must be assigned to at least one of these faculties,nbsp; but can belong to two or three faculties at the same time.



Hints:

  • The exercise belongs to the chapter  Set Theory Basics.
  • The topic of this chapter is illustrated with examples in the  (German language)  learning video
Mengentheoretische Begriffe und Gesetzmäßigkeiten   $\Rightarrow$   "Set Theoretical Concepts and Laws".
  • The areas in the above diagram are to scale,  so you can easily give the  (percentage)  occupancy figures using the numerical values given and simple geometric considerations.


Questions

1

Calculate the number of students enrolled in the faculties.  As a check,  enter the number of students in the Faculty of Theology  $(N_{\rm T})$.

$N_{\rm T} \ = \ $

2

Which of the following statements are true?

$I$  is a subset of  $M$.
$W$  is a subset of  $B$.
$W$  and  $M$  together form a  "complete system".
$B$,  $I$  and  $T$  together form a  "complete system".
$W$  and  $T$  are disjoint sets.
The union of  $B$,  $I$  and  $T$  gives the universal set  $G$.
The intersection of  $B$,  $I$  and  $T$  gives the empty set  $\phi$.

3

What is the proportion of female IT students relative to all students?

$\text{Pr}\big[\text{female IT student}\big] \ = \ $

$\ \%$

4

What is the proportion of students with only one field of study?

$\text{Pr}\big[\text{one field of study}\big] \ = \ $

$\ \%$

5

What is the percentage of students with three fields of study?

$\text{Pr}\big[\text{three fields of study}\big] \ = \ $

$\ \%$

6

What is the percentage of students with two fields of study?

$\text{Pr}\big[\text{two fields of study}\big] \ = \ $

$\ \%$


Solution

(1)  From simple geometric considerations,  we arrive at the results:

$${\rm Pr}(B) = 3/4 \cdot 1 = 3/4\hspace{0.3cm}(\text{absolute:}\ 720),$$
$${\rm Pr}(I) = {1}/{2}\cdot 1\cdot 1 = 1/2\hspace{0.3cm}(\text{absolute:} \ 480),$$
$${\rm Pr}(T) = {1}/{2} \cdot {3}/{4} \cdot {3}/{4} = {9}/{32} \hspace{0.3cm}(\text{absolute:}\ 270)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}N_{\rm T} \;\underline{= 270}.$$


(2)  Proposed solutions 2, 3, 5 and 6  are correct   ⇒   proposed solutions 1, 4, 7 are consequently incorrect:

  • There are also female IT students,  although very few.
  • The union of  $B$,  $I$  and  $T$  gives the universal set,  but not a complete system  (not all combinations of  $B$,  $I$  and  $T$  are disjoint).
  • For the same reason,  the intersection of  $B$,  $I$  and  $T$  does not yield the empty set.


Geometric solution of a probability problem

(3)  In set theory,  an IT student is the intersection of  $I$  and  $W$ 
(shown as a shaded area in the upper left of the graph):

$$\text{Pr[female IT student] = Pr}(I \cap W) = {1}/{2}\cdot {1}/{4} \cdot {1}/{4} = {1}/{32} \hspace{0.15cm}\underline { \thickapprox 3.13 \%}.$$

In words,  there are  $30$  female IT students among the  $960$  students.


(4)  The probability can be calculated as the sum of three individual probabilities:

$$ \text{Pr[one field of study] = Pr}( \overline{B} \cap \overline{I} \cap T) + {\rm Pr}( \overline{B} \cap I \cap \overline{T}) + {\rm Pr}( \it B \cap \overline{I} \cap \overline{T}).$$
  • Each individual probability corresponds to an area in the Venn diagram and can be determined by addition or subtraction of triangles or rectangles (see graph):
$$p_1 = {\rm Pr}( \overline{B} \cap \overline{I} \cap T) = {\rm Triangle\ (ABC)}= \frac{1}{2}\hspace{0.02cm} \cdot \hspace{0.02cm}\frac{1}{4}\hspace{0.02cm}\cdot \hspace{0.02cm}\frac{1}{4}= \frac{1}{32}\hspace{0.1cm}\underline{\approx 0.0313},$$
$$p_2 ={\rm Pr}( \overline{B} \cap I \cap \overline{T}) = {\rm Rectangle\hspace{0.1cm}(DEFG)}= \frac{1}{4}\hspace{0.02cm}\cdot \hspace{0.02cm} \frac{1}{4}\hspace{0.02cm}+ \hspace{0.02cm}\frac{1}{2}\hspace{0.02cm}\cdot \hspace{0.02cm} \frac{1}{4}\hspace{0.02cm}\cdot \hspace{0.02cm} \frac{1}{4} = \frac{3}{32}\hspace{0.1cm}\underline{\approx 0.0938},$$
$$p_3 = {\rm Triangle\hspace{0.1cm}(HIC)}- {\rm Triangle\hspace{0.1cm}(KJC)} ={1}/{2}\hspace{0.1cm} \cdot \hspace{0.1cm} 1 \hspace{0.1cm} \cdot \hspace{0.1cm} 1 \hspace{0.1cm} - \hspace{0.1cm}{1}/{2}\hspace{0.05cm} \cdot \hspace{0.1cm} {3}/{4} \cdot {3}/{8} = {23}/{64}.$$

 $\text{Or:}\hspace{0.3cm}$

$$p_3 = {\rm Pr}( B \cap \overline{I} \cap \overline{T}) ={\rm Rectangle\hspace{0.1cm}(HIJK)}= {\rm Triangle\hspace{0.1cm}(HLK)}- {\rm Triangle\hspace{0.1cm}(ILJ)} = \frac{1}{2}\hspace{0.02cm} \cdot \hspace{0.02cm} \frac{5}{4}\hspace{0.02cm} \cdot \hspace{0.02cm} \frac{5}{8}\hspace{0.02cm} - \hspace{0.02cm}\frac{1}{2}\hspace{0.02cm} \cdot \hspace{0.02cm} \frac{1}{4} \cdot \frac{1}{4} = \frac{23}{64}\hspace{0.1cm}\underline{\approx 0.3594}.$$
  • The sum of these three probabilities leads to the final result  $ \text{Pr[one field of study] } = 31/64 \;\underline {\approx 48.43 \%}$.


(5)  This probability is expressed by the triangle  $\text{Triangle(AGK)}$ .  This has the area

$$\text{Pr[three fields of study]} = {1}/{2}\cdot {1}/{4}\cdot {1}/{8} = {1}/{64}\hspace{0.15cm}\underline{\approx 1.56 \%}.$$


(6)  The three events

  • "only one field of study",
  • "two fields of study" and
  • "three fields of study"


form a complete system.  Thus,  using the results of the last subtasks,  we obtain:

$$\text{Pr[two fields of study]} = 1- \text{Pr[one field of study] } - \text{[three fields of study]}= 1- {31}/{64} - {1}/{64} \hspace{0.15cm}\underline{= 50\%}.$$

One would arrive at exactly the same result – but with considerably more effort – in the direct way accordingly:

$$\text{Pr[two fields of study]} = {\rm Pr}(B\cap I \cap\overline{T}) + {\rm Pr}(B\cap\overline{I}\cap{T}) + {\rm Pr}(\overline{B}\cap I \cap T).$$