Difference between revisions of "Aufgaben:Exercise 2.4: Frequency and Phase Offset"

From LNTwww
m
Line 77: Line 77:
 
{{ML-Kopf}}
 
{{ML-Kopf}}
 
'''(1)'''&nbsp;  <u>Answers 2, 3 and 5</u> are correct:  
 
'''(1)'''&nbsp;  <u>Answers 2, 3 and 5</u> are correct:  
*Bei ZSB–AM ohne Träger bzw. mit einem Modulationsgrad&nbsp; $m > 1$&nbsp; ist Hüllkurvendemodulation nicht anwendbar.  
+
*Envelope demodulation is not applicable for ZSB-AM without carrier and a modulation depth of &nbsp; $m > 1$&nbsp;.  
*Die Leistungsfähigkeit des Synchrondemodulators wird durch den zusätzlichen Trägeranteil nicht gesteigert, sondern führt lediglich zu einer unnötigen Vergrößerung der aufzubringenden Sendeleistung.
+
*The performance of the synchronous demodulator is not increased by the additional carrier component, but only leads to an unnecessary increase in the transmit power to be applied.
*Auch die dritte Aussage ist richtig.&nbsp; In der Musterlösung zur&nbsp; [[Aufgaben:Aufgabe_2.4Z:_Tiefpass-Einfluss_bei_Synchrondemodulation|Aufgabe 2.4Z]]&nbsp; wird gezeigt, welche Auswirkungen ein Verzicht bzw. eine falsche Dimensionierung von&nbsp; $H_{\rm E} (f)$&nbsp; hat.
+
*The third statement is also correct. The solution to [[Aufgaben:Exercise_2.4Z:__Low-pass_Influence_with_Synchronous_Demodulation|Exercise 2.4Z]]&nbsp; shows the effects of omitting or incorrectly dimensioning&nbsp; $H_{\rm E} (f)$&nbsp; .  wird gezeigt, welche Auswirkungen ein Verzicht bzw. eine falsche Dimensionierung hat.
  
  
  
'''(2)'''&nbsp; Wie der Name „Synchrondemodulator” bereits impliziert, müssen die Signale&nbsp; $z(t)$&nbsp; und&nbsp; $z_{\rm E} (t)$&nbsp; frequenz– und phasensynchron sein:
+
'''(2)'''&nbsp; As the name "Synchronous demodulator” already implies, the signals &nbsp; $z(t)$&nbsp; and&nbsp; $z_{\rm E} (t)$&nbsp;  
 +
must be synchronous in frequency and phase:
 
:$$f_{\rm E} = f_{\rm T} \hspace{0.15cm}\underline {= 50\,{\rm kHz}}, \hspace{0.15cm}\phi_{\rm E} = \phi_{\rm T} \hspace{0.15cm}\underline {= - 90^{\circ}} \hspace{0.05cm}.$$
 
:$$f_{\rm E} = f_{\rm T} \hspace{0.15cm}\underline {= 50\,{\rm kHz}}, \hspace{0.15cm}\phi_{\rm E} = \phi_{\rm T} \hspace{0.15cm}\underline {= - 90^{\circ}} \hspace{0.05cm}.$$
*Die Trägerfrequenz&nbsp; $f_{\rm T} $&nbsp; am Sender kann aus den Angaben über das Sendespektrum&nbsp; $S(f)$&nbsp; ermittelt werden.&nbsp; Bei vollständiger Synchronität gilt:
+
*The carrier frequency&nbsp; $f_{\rm T} $&nbsp; at the transmitter can be determined from the transmission spectrum data&nbsp; $S(f)$&nbsp;.&nbsp; In the case of perfect synchronisation:
 
:$$v(t) = {A_{\rm E}}/{2} \cdot q(t) + {A_{\rm E}}/{2} \cdot q(t)\cdot \cos(2 \cdot \omega_{\rm T} \cdot t ) \hspace{0.05cm}.$$
 
:$$v(t) = {A_{\rm E}}/{2} \cdot q(t) + {A_{\rm E}}/{2} \cdot q(t)\cdot \cos(2 \cdot \omega_{\rm T} \cdot t ) \hspace{0.05cm}.$$
*Der zweite Term wird durch den Tiefpass entfernt.&nbsp; Mit&nbsp; $A_{\rm E}\hspace{0.15cm}\underline{ = 2}$&nbsp; gilt somit&nbsp; $v(t) = q(t)$.
+
*The second term is removed by the low-pass filter.&nbsp; Thus, with&nbsp; $A_{\rm E}\hspace{0.15cm}\underline{ = 2}$&nbsp;,&nbsp; $v(t) = q(t)$ holds.
  
  
  
'''(3)'''&nbsp; Im Theorieteil wurde gezeigt, dass bei ZSB–AM und Synchrondemodulation allgemein gilt:
+
'''(3)'''&nbsp; In the theory section, it was shown that in general, for DSB-AM and synchronous demodulation:
 
:$$v(t) = \cos(\Delta \phi_{\rm T}) \cdot q(t) \hspace{0.05cm}.$$
 
:$$v(t) = \cos(\Delta \phi_{\rm T}) \cdot q(t) \hspace{0.05cm}.$$
*Auch bei ungenügender Phasensynchronisation kommt es nicht zu Verzerrungen, sondern nur zu einer frequenzunabhängigen Dämpfung.  
+
*Even insufficient phase synchronisation does not lead to distortions, only frequency-independent attenuation.
 
*Mit&nbsp; $ϕ_{\rm T} =-90^\circ$&nbsp; und&nbsp; $ϕ_{\rm T} = -120^\circ$&nbsp; ist&nbsp; $Δϕ_{\rm T} = -30^\circ$&nbsp; und man erhält:
 
*Mit&nbsp; $ϕ_{\rm T} =-90^\circ$&nbsp; und&nbsp; $ϕ_{\rm T} = -120^\circ$&nbsp; ist&nbsp; $Δϕ_{\rm T} = -30^\circ$&nbsp; und man erhält:
 
:$$ v(t) = \cos(30^{\circ}) \cdot q(t)= 0.866 \cdot q(t) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} v(t= 0) = 0.866 \cdot A_1 \hspace{0.15cm}\underline {= 1.732\,{\rm V}}\hspace{0.05cm}.$$
 
:$$ v(t) = \cos(30^{\circ}) \cdot q(t)= 0.866 \cdot q(t) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} v(t= 0) = 0.866 \cdot A_1 \hspace{0.15cm}\underline {= 1.732\,{\rm V}}\hspace{0.05cm}.$$

Revision as of 23:04, 29 November 2021

Model of a synchronous demodulator

Consider the source signal  $q(t) = A_{\rm 1} \cdot \cos(2 \pi f_{\rm 1} t ) +A_{\rm 2} \cdot \sin(2 \pi f_{\rm 2} t )$  with the signal parameters

$$ A_1 = 2\,{\rm V}, \hspace{0.15cm}f_1 = 2\,{\rm kHz} \hspace{0.05cm},$$
$$A_2 = 1\,{\rm V}, \hspace{0.15cm}f_2 = 5\,{\rm kHz}\hspace{0.05cm}.$$

This signal is DSB ammplitude modulated.

Thus, the modulated signal  $s(t)$  has spectral components at  $±45$ kHz,  $±48$ kHz,  $±52$ kHz  and  $±55$ kHz.  It is also known, that the transmitter-side carrier Trägersignal is sinusoidal  $(ϕ_{\rm T} = -90^\circ)$.

The demodulation to be performed with the circuit sketched here, which is defined by the following parameters:

  • Amplitude  $A_{\rm E}$  (no unit),
  • Frequency  $f_{\rm E}$,
  • Phase  $ϕ_{\rm E}$.


The  $H_{\rm E}(f)$  block represents an ideal, rectangular low-pass filter, which is suitably dimensioned.





Hints:

  • Take the following trigonometric transformations into account:
$$\cos(\alpha)\cdot \cos(\beta) = {1}/{2} \cdot \left[ \cos(\alpha-\beta) + \cos(\alpha+\beta)\right] \hspace{0.05cm},$$
$$\sin(\alpha)\cdot \cos(\beta) = {1}/{2} \cdot \left[ \sin(\alpha-\beta) + \sin(\alpha+\beta)\right] \hspace{0.05cm},$$
$$\sin(\alpha)\cdot \sin(\beta) = {1}/{2} \cdot \left[ \cos(\alpha-\beta) - \cos(\alpha+\beta)\right] \hspace{0.05cm}.$$


Questions

1

Which of the following statements are true?

The demodulator would work better for DSB-AM with carrier.
The carrier would unnecessarily increase the transmit power.
The correct dimensioning of the low-pass  $H_{\rm E}(f)$  is essential.
One could also use an envelope demodulator.
Envelope demodulation is only applicable for  $m \le 1$ .

2

How should the signal parameters of the receiver-side carrier signal  $z_{\rm E}(t)$  be chosen, so that  $v(t) = q(t)$  holds?

$A_{\rm E} \ = \ $

$f_{\rm E} \ \hspace{0.05cm} = \ $

$\ \text{kHz}$
$\phi_{\rm E} \ = \ $

$\ \text{Grad}$

3

Let  $f_{\rm E} = f_{\rm T}$  (no frequency offset).  Which sink signal  $v(t)$  results with  $ϕ_{\rm E} = - 120^\circ$?
Give its signal value at  $t = 0$ .

$v(t = 0)\ = \ $

$\ \text{V}$

4

Now also let  $f_{\rm E} = f_{\rm T}$.  Which sink signal  $v(t)$  results with  $ϕ_{\rm E} = 0^\circ$?
Give the signal value at  $t = 0$ .

$v(t = 0)\ = \ $

$\ \text{V}$

5

Let  $ϕ_{\rm E} = ϕ_{\rm T}$  (no phase offset).  Which sink signal does one obtain with  $Δ\hspace{-0.05cm}f_{\rm T} = f_{\rm E} - f_{\rm T} = 1\text{ kHz}$?
Which of the following statements are correct?

It holds that  $v(t) = q(t) · \cos(2π · Δ\hspace{-0.05cm}f_{\rm T} · t).$
$v(t)$  contains a spectral component at  $2$ kHz.
$v(t)$  contains a spectral component at $4$ kHz.
$v(t)$  contains a spectral component at  $6$ kHz.


Solution

(1)  Answers 2, 3 and 5 are correct:

  • Envelope demodulation is not applicable for ZSB-AM without carrier and a modulation depth of   $m > 1$ .
  • The performance of the synchronous demodulator is not increased by the additional carrier component, but only leads to an unnecessary increase in the transmit power to be applied.
  • The third statement is also correct. The solution to Exercise 2.4Z  shows the effects of omitting or incorrectly dimensioning  $H_{\rm E} (f)$  . wird gezeigt, welche Auswirkungen ein Verzicht bzw. eine falsche Dimensionierung hat.


(2)  As the name "Synchronous demodulator” already implies, the signals   $z(t)$  and  $z_{\rm E} (t)$  must be synchronous in frequency and phase:

$$f_{\rm E} = f_{\rm T} \hspace{0.15cm}\underline {= 50\,{\rm kHz}}, \hspace{0.15cm}\phi_{\rm E} = \phi_{\rm T} \hspace{0.15cm}\underline {= - 90^{\circ}} \hspace{0.05cm}.$$
  • The carrier frequency  $f_{\rm T} $  at the transmitter can be determined from the transmission spectrum data  $S(f)$ .  In the case of perfect synchronisation:
$$v(t) = {A_{\rm E}}/{2} \cdot q(t) + {A_{\rm E}}/{2} \cdot q(t)\cdot \cos(2 \cdot \omega_{\rm T} \cdot t ) \hspace{0.05cm}.$$
  • The second term is removed by the low-pass filter.  Thus, with  $A_{\rm E}\hspace{0.15cm}\underline{ = 2}$ ,  $v(t) = q(t)$ holds.


(3)  In the theory section, it was shown that in general, for DSB-AM and synchronous demodulation:

$$v(t) = \cos(\Delta \phi_{\rm T}) \cdot q(t) \hspace{0.05cm}.$$
  • Even insufficient phase synchronisation does not lead to distortions, only frequency-independent attenuation.
  • Mit  $ϕ_{\rm T} =-90^\circ$  und  $ϕ_{\rm T} = -120^\circ$  ist  $Δϕ_{\rm T} = -30^\circ$  und man erhält:
$$ v(t) = \cos(30^{\circ}) \cdot q(t)= 0.866 \cdot q(t) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} v(t= 0) = 0.866 \cdot A_1 \hspace{0.15cm}\underline {= 1.732\,{\rm V}}\hspace{0.05cm}.$$


(4)  Nun beträgt die Phasendifferenz  $Δϕ_{\rm T} = 90^\circ$  und man erhält  $v(t) \equiv 0$.

  • Es ist müßig darüber zu diskutieren, ob es sich hierbei noch immer um ein verzerrungsfreies System handelt.
  • Das Ergebnis  $v(t) \equiv 0$  ist darauf zurückzuführen, dass Cosinus und Sinus orthogonale Funktionen sind.
  • Dieses Prinzip wird zum Beispiel bei der so genannten  Quadratur–Amplitudenmodulation  ausgenutzt.


(5)  Hier lautet nun die Gleichung für das Signal nach der Multiplikation:

$$b(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t - 90^{\circ}) \cdot 2 \cdot \cos(\omega_{\rm E} \cdot t - 90^{\circ})= 2 \cdot q(t) \cdot \sin(\omega_{\rm T} \cdot t ) \cdot \sin(\omega_{\rm E} \cdot t )\hspace{0.05cm}.$$
  • Dieses Ergebnis kann mit der trigonometrischen Umformung
$$\sin(\alpha)\cdot \sin(\beta) = {1}/{2} \cdot \left[ \cos(\alpha-\beta) - \cos(\alpha+\beta)\right]$$
auch wie folgt geschrieben werden:
$$ b(t) = q(t) \cdot \cos((\omega_{\rm T} - \omega_{\rm E}) \cdot t ) + q(t) \cdot \cos((\omega_{\rm T} + \omega_{\rm E}) \cdot t ) \hspace{0.05cm}.$$
  • Der zweite Term liegt für  $f_{\rm E} ≈ f_{\rm T}$  in der Umgebung von  $2f_{\rm T}$  und wird durch den Tiefpass entfernt.


Somit bleibt mit der Frequenzdifferenz  $Δ\hspace{-0.05cm}f_{\rm T} = f_{\rm E} - f_{\rm T}= 1$ kHz:

$$ v(t) = q(t) \cdot \cos(2 \pi \cdot \Delta \hspace{-0.05cm}f_{\rm T} \cdot t) \hspace{0.05cm}.$$
  • Die erste Aussage ist richtig.  Diese besagt, dass nun das Nachrichtensignal  $v(t)$  nach der Demodulation gemäß einer Cosinusfunktion leiser und wieder lauter wird („Schwebung”).
  • Aus dem Cosinusanteil von  $q(t)$  mit der Frequenz  $f_1 = 2\text{ kHz}$  werden nun zwei Anteile  (jeweils halber Amplitude)  bei  $1\text{ kHz}$ und $3\text{ kHz}$.
  • Ebenso ist im Sinkensignal kein Anteil bei  $f_2 = 5\text{ kHz}$  enthalten, sondern lediglich Anteile bei  $4\text{ kHz}$  und bei  $6\text{ kHz}$:
$$1\,{\rm V} \cdot \sin(2 \pi \cdot 5\,{\rm kHz} \cdot t)\cdot \cos(2 \pi \cdot 1\,{\rm kHz} \cdot t) = 0.5\,{\rm V} \cdot \sin(2 \pi \cdot 4\,{\rm kHz} \cdot t) + 0.5\,{\rm V} \cdot \sin(2 \pi \cdot 6\,{\rm kHz} \cdot t)\hspace{0.05cm}.$$

Richtig sind somit die Aussagen 1, 3 und 4.