Difference between revisions of "Aufgaben:Exercise 1.5: Drawing Cards"

From LNTwww
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID77__Sto_A_1_5.gif|right|frame|Wish result "Three aces"]]
+
[[File:P_ID77__Sto_A_1_5.gif|right|frame|Wish result   "Three aces"]]
From a deck of  $32$  cards, including four aces, three cards are drawn in succession.
+
From a deck of  $32$  cards,  including four aces,  three cards are drawn in succession.
  
*For subtask  '''(1)'''  it is assumed that after drawing a card it is put back into the deck, then the deck is reshuffled and the next card is drawn.
+
*For subtask  '''(1)'''  it is assumed that after drawing a card it is put back into the deck,  then the deck is reshuffled and the next card is drawn.
  
  
*In contrast, for the other subtasks starting with  '''(2)'''  , you are supposed to assume that the three cards are drawn at once ("draw without putting back").
+
*In contrast,  for the other subtasks starting with  '''(2)''',  you are supposed to assume that the three cards are drawn at once  ("draw without putting back").
  
  
In the following, we denote by  $A_i$  the event that the card drawn at time  $i$  is an ace. Here  $i \in \{ 1, 2, 3 \}$. The complementary event then states that some card other than an ace is drawn at time  $i$ .
+
In the following,  we denote by  $A_i$  the event that the card drawn at time  $i$  is an ace.  Here  $i \in \{ 1, 2, 3 \}$.  The complementary event then states that some card other than an ace is drawn at time  $i$.
  
  
Line 21: Line 21:
 
   
 
   
 
*The topic of this chapter is illustrated with examples in the   (German language)   learning video
 
*The topic of this chapter is illustrated with examples in the   (German language)   learning video
:[[Statistische_Abhängigkeit_und_Unabhängigkeit_(Lernvideo)|Statistische Abhängigkeit und Unabhängigkeit]]   $\Rightarrow$   "Statistical dependence and independence".
+
::[[Statistische_Abhängigkeit_und_Unabhängigkeit_(Lernvideo)|Statistische Abhängigkeit und Unabhängigkeit]]   $\Rightarrow$   "Statistical dependence and independence".
  
  
Line 28: Line 28:
  
 
<quiz display=simple>
 
<quiz display=simple>
{First, consider the case of "drawing with putting back". What is the probability&nbsp; $p_1$, that three aces are drawn?
+
{First,&nbsp; consider the case of&nbsp; "drawing with putting back".&nbsp; What is the probability&nbsp; $p_1$,&nbsp; that three aces are drawn?
 
|type="{}"}
 
|type="{}"}
 
$p_1 \ = \ $ { 0.002 3% }
 
$p_1 \ = \ $ { 0.002 3% }
Line 36: Line 36:
 
$p_2 \ =  \ $ { 0.0008 3% }
 
$p_2 \ =  \ $ { 0.0008 3% }
  
{BConsider further the case "drawing without putting back". What is the probability&nbsp; $p_3$ that not a single ace is drawn?
+
{Consider further the case&nbsp; "drawing without putting back".&nbsp; What is the probability&nbsp; $p_3$&nbsp; that not a single ace is drawn?
 
|type="{}"}
 
|type="{}"}
 
$p_3 \ =  \ $ { 0.6605 3% }
 
$p_3 \ =  \ $ { 0.6605 3% }
  
{What is the probability&nbsp; $p_4$ that exactly one ace is drawn
+
{What is the probability&nbsp; $p_4$&nbsp; that exactly one ace is drawn
 
|type="{}"}
 
|type="{}"}
 
$p_4 \ =  \ $ { 0.3048 3% }
 
$p_4 \ =  \ $ { 0.3048 3% }
  
{What is the probability&nbsp; $p_5$ that two of the drawn cards are aces?&nbsp; <br>''Hint'':&nbsp; Consider that the four events „exactly&nbsp; $i$&nbsp; aces are drawn” with&nbsp; $i \in \{ 0, 1, 2, 3 \}$&nbsp; describe a complete system.
+
{What is the probability&nbsp; $p_5$&nbsp; that two of the drawn cards are aces?&nbsp; <br>Hint:&nbsp; Consider that the four events&nbsp; [exactly&nbsp; $i$&nbsp; aces are drawn]&nbsp; with&nbsp; $i \in \{ 0, 1, 2, 3 \}$&nbsp; describe a complete system.
 
|type="{}"}
 
|type="{}"}
 
$p_5 \ =  \ $ { 0.0339 3% }
 
$p_5 \ =  \ $ { 0.0339 3% }

Revision as of 15:56, 30 November 2021

Wish result  "Three aces"

From a deck of  $32$  cards,  including four aces,  three cards are drawn in succession.

  • For subtask  (1)  it is assumed that after drawing a card it is put back into the deck,  then the deck is reshuffled and the next card is drawn.


  • In contrast,  for the other subtasks starting with  (2),  you are supposed to assume that the three cards are drawn at once  ("draw without putting back").


In the following,  we denote by  $A_i$  the event that the card drawn at time  $i$  is an ace.  Here  $i \in \{ 1, 2, 3 \}$.  The complementary event then states that some card other than an ace is drawn at time  $i$.



Hints:

  • The topic of this chapter is illustrated with examples in the  (German language)  learning video
Statistische Abhängigkeit und Unabhängigkeit   $\Rightarrow$   "Statistical dependence and independence".


Questions

1

First,  consider the case of  "drawing with putting back".  What is the probability  $p_1$,  that three aces are drawn?

$p_1 \ = \ $

2

What is the probability  $p_2$  that three aces will be drawn if the cards are not put back?  Why is  $p_2$  smaller/equal/larger than  $p_1$?

$p_2 \ = \ $

3

Consider further the case  "drawing without putting back".  What is the probability  $p_3$  that not a single ace is drawn?

$p_3 \ = \ $

4

What is the probability  $p_4$  that exactly one ace is drawn

$p_4 \ = \ $

5

What is the probability  $p_5$  that two of the drawn cards are aces? 
Hint:  Consider that the four events  [exactly  $i$  aces are drawn]  with  $i \in \{ 0, 1, 2, 3 \}$  describe a complete system.

$p_5 \ = \ $


Solution

(1)  For each card, the probability of an ace is exactly equal  $(1/8)$:

$$p_{\rm 1} = {\rm Pr} (3 \hspace{0.1cm} {\rm Asse}) = {\rm Pr} (A_{\rm 1})\cdot {\rm Pr} (A_{\rm 2})\cdot {\rm Pr}(A_{\rm 3}) = \rm ({1}/{8})^3 \hspace{0.15cm}\underline {\approx 0.002}.$$


(2)  Now, using the general multiplication theorem, we obtain:

$$p_{\rm 2} = {\rm Pr} (A_{\rm 1}\cap A_{\rm 2} \cap A_{\rm 3} ) = {\rm Pr} (A_{\rm 1}) \cdot {\rm Pr} (A_{\rm 2}\hspace{0.05cm}|\hspace{0.05cm}A_{\rm 1} ) \cdot {\rm Pr} \big[A_{\rm 3} \hspace{0.05cm}|\hspace{0.05cm}( A_{\rm 1}\cap A_{\rm 2} )\big].$$
  • The conditional probabilities are computable according to the classical definition.  For this, one obtains  $k/m$  (with  $m$  cards, there are still  $k$  aces in the deck):
$$p_{\rm 2} ={4}/{32}\cdot {3}/{31}\cdot{2}/{30} \hspace{0.15cm}\underline { \approx 0.0008}.$$
  • We can see:   $p_2$  is smaller than  $p_1$,, since now the second and third aces are less probable than before.


(3)  Analogous to subtask  (2) , we obtain here:

$$p_{\rm 3} = {\rm Pr}(\overline{A_{\rm 1}})\cdot {\rm Pr} (\overline{A_{\rm 2}} \hspace{0.05cm}|\hspace{0.05cm}\overline{A_{\rm 1}})\cdot {\rm Pr} (\overline{A_{\rm 3}}\hspace{0.05cm}|\hspace{0.05cm}(\overline{A_{\rm 1}} \cap \overline{A_{\rm 2}} )) = {28}/{32}\cdot{27}/{31}\cdot {26}/{30}\hspace{0.15cm}\underline {\approx 0.6605}.$$


(4)  This probability can be expressed as the sum of three probabilities, since the associated events are disjoint:

$$p_{\rm 4} = {\rm Pr} (D_{\rm 1} \cup D_{\rm 2} \cup D_{\rm 3}) \rm \hspace{0.1cm}mit\hspace{-0.1cm}:$$
$$ {\rm Pr} (D_{\rm 1}) = {\rm Pr}( A_{\rm 1} \cap \overline{ A_{\rm 2}} \cap \overline{A_{\rm 3}}) = \rm \frac{4}{32}\cdot \frac{28}{31}\cdot \frac{27}{30}=\rm 0.1016,$$
$${\rm Pr} (D_{\rm 2}) = \rm Pr ( \overline{A_{\rm 1}} \cap A_{\rm 2} \cap \overline{A_{\rm 3}}) = \rm \frac{28}{32}\cdot \frac{4}{31}\cdot \frac{27}{30}=\rm 0.1016,$$
$${\rm Pr} (D_{\rm 3} \rm) = Pr ( \overline{\it A_{\rm 1}} \cap \overline{\it A_{\rm 2}} \cap A_{\rm 3}) = \rm \frac{28}{32}\cdot \frac{27}{31}\cdot \frac{4}{30}=\rm 0.1016.$$
  • These probabilities are all the same – why should it be any different?
  • If you draw exactly one ace from three cards, it is just as likely whether you draw it first, second, or third.
  • This gives  $p_4 \; \underline{= 0.3048}$ for the sum.


(5)  If we define the events  $E_i :=$  "Exactly $i$ aces are drawn on three cards" with index  $i \in \{ 0, 1, 2, 3 \}$,
        then  $E_0$,  $E_1$,  $E_2$  and  $E_3$  describe a complete system. Therefore:

$$p_{\rm 5} = {\rm Pr}(E_2) = 1 - {\rm Pr}(E_0) -{\rm Pr}(E_1) - {\rm Pr}(E_3) = 1 - p_3 -p_4 - p_2 \hspace{0.15cm}\underline {= \rm 0.0339}.$$