Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 1.6Z: Ergodic Probabilities"

From LNTwww
Line 2: Line 2:
 
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Markov_Chains}}
 
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Markov_Chains}}
  
[[File:P_ID452__Sto_Z_1_6.png|right|frame|Binary Markov chain with  A  and  B]]
+
[[File:P_ID452__Sto_Z_1_6.png|right|frame|Markov chain with  A,  B]]
 
We consider a homogeneous stationary first-order Markov chain with events  A  and  B  and transition probabilities corresponding to the adjacent Markov diagram:
 
We consider a homogeneous stationary first-order Markov chain with events  A  and  B  and transition probabilities corresponding to the adjacent Markov diagram:
  
For subtasks  '''(1)'''  to  '''(4)''' , assume:
+
For subtasks  '''(1)'''  to  '''(4)''',  assume:
  
*Event   A  is followed by  A  and  B  with equal probability.
+
*Event  A  is followed by  A  and  B  with equal probability.
  
*After  B , event  A  is twice as likely as  B.
+
*After  B:  The event  A  is twice as likely as  B.
  
  
From subtask  '''(5)'''  on,  p  and  q  are free parameters, while the event probabilities  Pr(A)=2/3  and  Pr(B)=1/3  are fixed.
+
From subtask  '''(5)'''  on,  p  and  q  are free parameters,  while the ergodic probabilities  Pr(A)=2/3  and  Pr(B)=1/3  are fixed.
  
  
Line 23: Line 23:
 
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Markov_Chains|Markov Chains]].
 
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Markov_Chains|Markov Chains]].
 
   
 
   
*You can check your results with the interactive applet  [[Applets:Markovketten|Event probabilities of a 1st order Markov chain]] .
+
*You can check your results with the   (German language)  interactive SWF applet
 +
: [[Applets:Markovketten|Ereigniswahrscheinlichkeiten einer Markov-Kette erster Ordnung]]   ⇒   "Event Probabilities of a First Order Markov Chain".
  
  
Line 40: Line 41:
 
Pr(B) =  { 0.429 3% }
 
Pr(B) =  { 0.429 3% }
  
{What is the conditional probability that event  B  occurs if event  A  occurred two bars before?
+
{What is the conditional probability that event  B  occurs if event  A  occurred two steps before?
 
|type="{}"}
 
|type="{}"}
 
Pr(Bν|Aν2) =  { 0.417 3% }
 
Pr(Bν|Aν2) =  { 0.417 3% }
  
{What is the inferential probability that event  A  occurred two bars before when event  B  currently occurs?
+
{What is the inferential probability that event  A  occurred two steps before,  when event  B  currently occurs?
 
|type="{}"}
 
|type="{}"}
 
Pr(Aν2|Bν) =  { 0.556 3% }
 
Pr(Aν2|Bν) =  { 0.556 3% }
Line 52: Line 53:
 
q =  { 0. }
 
q =  { 0. }
  
{How must the parameters be chosen so that the sequence elements of the Markov chain are statistically independent and additionally  Pr(A)=2/3  gilt?
+
{How must the parameters be chosen so that the sequence elements of the Markov chain are statistically independent and additionally  Pr(A)=2/3 ?
 
|type="{}"}
 
|type="{}"}
 
p =  { 0.667 3% }
 
p =  { 0.667 3% }

Revision as of 19:01, 1 December 2021

Markov chain with  AB

We consider a homogeneous stationary first-order Markov chain with events  A  and  B  and transition probabilities corresponding to the adjacent Markov diagram:

For subtasks  (1)  to  (4),  assume:

  • Event  A  is followed by  A  and  B  with equal probability.
  • After  B:  The event  A  is twice as likely as  B.


From subtask  (5)  on,  p  and  q  are free parameters,  while the ergodic probabilities  Pr(A)=2/3  and  Pr(B)=1/3  are fixed.




Hints:

  • You can check your results with the   (German language)  interactive SWF applet
Ereigniswahrscheinlichkeiten einer Markov-Kette erster Ordnung   ⇒   "Event Probabilities of a First Order Markov Chain".


Questions

1

What are the transition probabilities  p  and  q?

p = 

q = 

2

Calculate the ergodic probabilities.

Pr(A) = 

Pr(B) = 

3

What is the conditional probability that event  B  occurs if event  A  occurred two steps before?

Pr(Bν|Aν2) = 

4

What is the inferential probability that event  A  occurred two steps before,  when event  B  currently occurs?

Pr(Aν2|Bν) = 

5

Let now  p=1/2  and  Pr(A)=2/3.  Which value results for  q?

q = 

6

How must the parameters be chosen so that the sequence elements of the Markov chain are statistically independent and additionally  Pr(A)=2/3 ?

p = 

q = 


Solution

(1)  According to the instruction,   p=1p   ⇒   p=0.500_  and  q=(1q)/2,   ⇒   q=0.333_ holds.


(2)  For the event probability of  A  holds:

Pr(A)=Pr(A|B)Pr(A|B)+Pr(B|A)=1q1q+1p=2/32/3+1/2=470.571_.
  • This gives  Pr(B)=1Pr(A)=3/70.429_.



(3)  No statement is made about the time  ν1 . 

  • At this time  A  or  B  may have occurred. Therefore holds:
Pr(Bν|Aν2)=Pr(A|A)Pr(B|A)+Pr(B|A)Pr(B|B)=p(1p)+q(1p)=5/120.417_.


(4)  According to Bayes' theorem:

Pr(Aν2|Bν)=Pr(Bν|Aν2)Pr(Aν2)Pr(Bν)=5/124/73/7=5/90.556_.

Reasoning:

  • The probability  Pr(Bν|Aν2)=5/12  has already been calculated in subsection  (3) .
  • Due to stationarity,  Pr(Aν2)=Pr(A)=4/7  and  Pr(Bν)=Pr(B)=3/7 holds.
  • Thus, the value of  5/9 is obtained for the sought inference probability according to the above equation..


(5)  According to subtask  (2) , with  p=1/2  for the probability of  A  in general:

Pr(A)=1q1.5q.
  • Thus from  Pr(A)=2/3  follows  q=0_.


(6)  In the case of statistical independence, for example, it must hold:

Pr(A|A)=Pr(A|B)=Pr(A).
  • From this follows  p=Pr(A)=2/3_  and accordingly  q=1p=1/3_.