Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 1.6Z: Ergodic Probabilities"

From LNTwww
m (Text replacement - "Category:Aufgaben zu Stochastische Signaltheorie" to "Category:Theory of Stochastic Signals: Exercises")
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Markovketten}}
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Markov_Chains}}
  
[[File:P_ID452__Sto_Z_1_6.png|right|frame|Binäre Markovkette mit  A  und  B]]
+
[[File:P_ID452__Sto_Z_1_6.png|right|frame|Markov chain with  A,  B]]
Wir betrachten eine homogene stationäre Markovkette erster Ordnung mit den Ereignissen  A  und  B  und den Übergangswahrscheinlichkeiten entsprechend dem nebenstehenden Markovdiagramm:
+
We consider a homogeneous stationary first-order Markov chain with events  A  and  B  and transition probabilities corresponding to the adjacent Markov diagram:
  
Für die Teilaufgaben  '''(1)'''  bis  '''(4)'''  wird vorausgesetzt:
+
For subtasks  '''(1)'''  to  '''(4)''',  assume:
  
*Nach dem Ereignis  A  folgen  A  und  B  mit gleicher Wahrscheinlichkeit.
+
*Event  A  is followed by  A  and  B  with equal probability.
  
*Nach  B  ist das Ereignis  A  doppelt so wahrscheinlich wie  B.
+
*After  B:  The event  A  is twice as likely as  B.
  
  
Ab Teilaufgabe  '''(5)'''  sind  p  und  q  als freie Parameter zu verstehen, während die Ereigniswahrscheinlichkeiten  Pr(A)=2/3  und  Pr(B)=1/3  fest vorgegeben sind.
+
From subtask  '''(5)'''  on,  p  and  q  are free parameters,  while the ergodic probabilities  Pr(A)=2/3  and  Pr(B)=1/3  are fixed.
  
  
Line 20: Line 20:
  
  
 
+
Hints:  
''Hinweise:''
+
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Markov_Chains|Markov Chains]].
*Die Aufgabe gehört zum  Kapitel  [[Theory_of_Stochastic_Signals/Markovketten|Markovketten]].
 
 
   
 
   
*Sie können Ihre Ergebnisse mit dem interaktiven Applet  [[Applets:Markovketten|Ereigniswahrscheinlichkeiten einer Markovkette 1. Ordnung]]  überprüfen.
+
*You can check your results with the   (German language)  interactive SWF applet
 +
: [[Applets:Markovketten|Ereigniswahrscheinlichkeiten einer Markov-Kette erster Ordnung]]   ⇒   "Event Probabilities of a First Order Markov Chain".
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie groß sind die Übergangswahrscheinlichkeiten&nbsp; p&nbsp; und&nbsp; q?
+
{What are the transition probabilities&nbsp; p&nbsp; and&nbsp; q?
 
|type="{}"}
 
|type="{}"}
 
p =   { 0.5 3% }
 
p =   { 0.5 3% }
 
q =  { 0.333 3% }
 
q =  { 0.333 3% }
  
{Berechnen Sie die ergodischen Wahrscheinlichkeiten.
+
{Calculate the ergodic probabilities.
 
|type="{}"}
 
|type="{}"}
 
Pr(A) =  { 0.571 3% }
 
Pr(A) =  { 0.571 3% }
 
Pr(B) =  { 0.429 3% }
 
Pr(B) =  { 0.429 3% }
  
{Wie groß ist die bedingte Wahrscheinlichkeit, dass das Ereignis&nbsp; B&nbsp; auftritt, wenn zwei Takte vorher das Ereignis&nbsp; A&nbsp; aufgetreten ist?
+
{What is the conditional probability that event&nbsp; B&nbsp; occurs if event&nbsp; A&nbsp; occurred two steps before?
 
|type="{}"}
 
|type="{}"}
 
Pr(Bν|Aν2) =  { 0.417 3% }
 
Pr(Bν|Aν2) =  { 0.417 3% }
  
{Wie groß ist die Rückschlusswahrscheinlichkeit, dass zwei Takte vorher das Ereignis&nbsp; A&nbsp; aufgetreten ist, wenn aktuell&nbsp; B&nbsp; auftritt?
+
{What is the inferential probability that event&nbsp; A&nbsp; occurred two steps before,&nbsp; when event&nbsp; B&nbsp; currently occurs?
 
|type="{}"}
 
|type="{}"}
 
Pr(Aν2|Bν) =  { 0.556 3% }
 
Pr(Aν2|Bν) =  { 0.556 3% }
  
{Es gelte nun&nbsp; p=1/2&nbsp; und&nbsp; Pr(A)=2/3.&nbsp; Welcher Wert ergibt sich für&nbsp; q?
+
{Let now&nbsp; p=1/2&nbsp; and&nbsp; Pr(A)=2/3.&nbsp; Which value results for&nbsp; q?
 
|type="{}"}
 
|type="{}"}
 
q =  { 0. }
 
q =  { 0. }
  
{Wie muss man die Parameter wählen, damit die Folgenelemente der Markovkette statistisch unabhängig sind und zusätzlich&nbsp; Pr(A)=2/3&nbsp; gilt?
+
{How must the parameters be chosen so that the sequence elements of the Markov chain are statistically independent and additionally&nbsp; Pr(A)=2/3&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
p =  { 0.667 3% }
 
p =  { 0.667 3% }
Line 61: Line 61:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Gemäß der Angabe gilt &nbsp; p=1p &nbsp; &rArr; &nbsp; p=0.500_&nbsp; und&nbsp; q=(1q)/2, &nbsp; &rArr; &nbsp; q=0.333_.
+
'''(1)'''&nbsp; According to the instruction, &nbsp; p=1p &nbsp; &rArr; &nbsp; p=0.500_&nbsp; and&nbsp; q=(1q)/2, &nbsp; &rArr; &nbsp; q=0.333_&nbsp; holds.
  
  
  
'''(2)'''&nbsp; F&uuml;r die Ereigniswahrscheinlichkeit von&nbsp; A&nbsp; gilt:
+
'''(2)'''&nbsp; For the event probability of&nbsp; A&nbsp; holds:
 
:Pr(A)=Pr(A|B)Pr(A|B)+Pr(B|A)=1q1q+1p=2/32/3+1/2=470.571_.
 
:Pr(A)=Pr(A|B)Pr(A|B)+Pr(B|A)=1q1q+1p=2/32/3+1/2=470.571_.
*Damit ergibt sich&nbsp; Pr(B)=1Pr(A)=3/70.429_.
+
*This gives&nbsp; Pr(B)=1Pr(A)=3/70.429_.
  
  
  
  
'''(3)'''&nbsp; &Uuml;ber den Zeitpunkt&nbsp; ν1&nbsp; ist keine Aussage getroffen.&nbsp;  
+
'''(3)'''&nbsp; No statement is made about the time&nbsp; ν1&nbsp;.&nbsp;  
*Zu diesem Zeitpunkt kann&nbsp;  A&nbsp; oder&nbsp; B&nbsp; aufgetreten sein. Deshalb gilt:
+
*At this time&nbsp;  A&nbsp; or&nbsp; B&nbsp; may have occurred. Therefore holds:
 
:$${\rm Pr}(B_{\nu} \hspace{0.05cm} | \hspace{0.05cm}A_{\nu -2}) = {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A) \hspace{0.05cm} \cdot \hspace{0.05cm}{\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) \hspace{0.15cm} +\hspace{0.15cm} {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) \hspace{0.05cm} \cdot \hspace{0.05cm}{\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}B) = p \hspace{0.1cm}  \cdot \hspace{0.1cm}  (1-p) +  q \hspace{0.1cm}  \cdot \hspace{0.1cm}  (1-p)
 
:$${\rm Pr}(B_{\nu} \hspace{0.05cm} | \hspace{0.05cm}A_{\nu -2}) = {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A) \hspace{0.05cm} \cdot \hspace{0.05cm}{\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) \hspace{0.15cm} +\hspace{0.15cm} {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) \hspace{0.05cm} \cdot \hspace{0.05cm}{\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}B) = p \hspace{0.1cm}  \cdot \hspace{0.1cm}  (1-p) +  q \hspace{0.1cm}  \cdot \hspace{0.1cm}  (1-p)
 
= {5}/{12}  \hspace{0.15cm}\underline {\approx 0.417}.$$
 
= {5}/{12}  \hspace{0.15cm}\underline {\approx 0.417}.$$
Line 81: Line 81:
  
  
'''(4)'''&nbsp; Nach dem Satz von Bayes gilt:
+
'''(4)'''&nbsp; According to Bayes' theorem:
 
:$${\rm Pr}(A_{\nu -2} \hspace{0.05cm} | \hspace{0.05cm}B_{\nu}) = \frac{{\rm Pr}(B_{\nu} \hspace{0.05cm} | \hspace{0.05cm}A_{\nu -2}) \cdot {\rm Pr}(A_{\nu -2} ) }{{\rm Pr}(B_{\nu}) } =  \frac{5/12 \cdot 4/7 }{3/7 }
 
:$${\rm Pr}(A_{\nu -2} \hspace{0.05cm} | \hspace{0.05cm}B_{\nu}) = \frac{{\rm Pr}(B_{\nu} \hspace{0.05cm} | \hspace{0.05cm}A_{\nu -2}) \cdot {\rm Pr}(A_{\nu -2} ) }{{\rm Pr}(B_{\nu}) } =  \frac{5/12 \cdot 4/7 }{3/7 }
 
= {5}/{9}  \hspace{0.15cm}\underline {\approx 0.556}.$$
 
= {5}/{9}  \hspace{0.15cm}\underline {\approx 0.556}.$$
''Begründung:''
+
Reasoning:
*Die Wahrscheinlichkeit&nbsp; Pr(Bν|Aν2)=5/12&nbsp; wurde bereits im Unterpunkt&nbsp; '''(3)'''&nbsp; berechnet.
+
*The probability&nbsp; Pr(Bν|Aν2)=5/12&nbsp; has already been calculated in subsection&nbsp; '''(3)'''.
*Aufgrund der Stationarit&auml;t gilt&nbsp; Pr(Aν2)=Pr(A)=4/7&nbsp; und&nbsp; Pr(Bν)=Pr(B)=3/7.  
+
*Due to stationarity,&nbsp; Pr(Aν2)=Pr(A)=4/7&nbsp; and&nbsp; Pr(Bν)=Pr(B)=3/7&nbsp; holds.  
*Damit erh&auml;lt man f&uuml;r die gesuchte R&uuml;ckschlusswahrscheinlichkeit nach obiger Gleichung den Wert&nbsp; 5/9.
+
*Thus,&nbsp; the value of&nbsp; 5/9 is obtained for the sought inference probability according to the above equation.
  
  
  
'''(5)'''&nbsp; Entsprechend der Teilaufgabe&nbsp; '''(2)'''&nbsp; gilt mit&nbsp; p=1/2&nbsp; für die Wahrscheinlichkeit von&nbsp; A&nbsp; allgemein:
+
'''(5)'''&nbsp; According to subtask&nbsp; '''(2)'''&nbsp; with&nbsp; p=1/2&nbsp; for the probability of&nbsp; A&nbsp; in general:
 
:Pr(A)=1q1.5q.
 
:Pr(A)=1q1.5q.
*Aus&nbsp; Pr(A)=2/3&nbsp; folgt somit&nbsp; q=0_.
+
*Thus from&nbsp; Pr(A)=2/3&nbsp; follows&nbsp; q=0_.
  
  
  
'''(6)'''&nbsp; Im Fall der statistischen Unabh&auml;ngigkeit muss beispielsweise gelten:
+
'''(6)'''&nbsp; In the case of statistical independence,&nbsp; for example,&nbsp; it must hold:
 
:Pr(A|A)=Pr(A|B)=Pr(A).
 
:Pr(A|A)=Pr(A|B)=Pr(A).
*Daraus folgt &nbsp;p=Pr(A)=2/3_&nbsp; und dementsprechend &nbsp;q=1p=1/3_.
+
*From this follows &nbsp;p=Pr(A)=2/3_&nbsp; and accordingly &nbsp;q=1p=1/3_.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Theory of Stochastic Signals: Exercises|^1.4 Markovketten
+
[[Category:Theory of Stochastic Signals: Exercises|^1.4 Markov Chains
 
^]]
 
^]]

Latest revision as of 19:07, 1 December 2021

Markov chain with  AB

We consider a homogeneous stationary first-order Markov chain with events  A  and  B  and transition probabilities corresponding to the adjacent Markov diagram:

For subtasks  (1)  to  (4),  assume:

  • Event  A  is followed by  A  and  B  with equal probability.
  • After  B:  The event  A  is twice as likely as  B.


From subtask  (5)  on,  p  and  q  are free parameters,  while the ergodic probabilities  Pr(A)=2/3  and  Pr(B)=1/3  are fixed.




Hints:

  • You can check your results with the   (German language)  interactive SWF applet
Ereigniswahrscheinlichkeiten einer Markov-Kette erster Ordnung   ⇒   "Event Probabilities of a First Order Markov Chain".


Questions

1

What are the transition probabilities  p  and  q?

p = 

q = 

2

Calculate the ergodic probabilities.

Pr(A) = 

Pr(B) = 

3

What is the conditional probability that event  B  occurs if event  A  occurred two steps before?

Pr(Bν|Aν2) = 

4

What is the inferential probability that event  A  occurred two steps before,  when event  B  currently occurs?

Pr(Aν2|Bν) = 

5

Let now  p=1/2  and  Pr(A)=2/3.  Which value results for  q?

q = 

6

How must the parameters be chosen so that the sequence elements of the Markov chain are statistically independent and additionally  Pr(A)=2/3 ?

p = 

q = 


Solution

(1)  According to the instruction,   p=1p   ⇒   p=0.500_  and  q=(1q)/2,   ⇒   q=0.333_  holds.


(2)  For the event probability of  A  holds:

Pr(A)=Pr(A|B)Pr(A|B)+Pr(B|A)=1q1q+1p=2/32/3+1/2=470.571_.
  • This gives  Pr(B)=1Pr(A)=3/70.429_.



(3)  No statement is made about the time  ν1 . 

  • At this time  A  or  B  may have occurred. Therefore holds:
Pr(Bν|Aν2)=Pr(A|A)Pr(B|A)+Pr(B|A)Pr(B|B)=p(1p)+q(1p)=5/120.417_.


(4)  According to Bayes' theorem:

Pr(Aν2|Bν)=Pr(Bν|Aν2)Pr(Aν2)Pr(Bν)=5/124/73/7=5/90.556_.

Reasoning:

  • The probability  Pr(Bν|Aν2)=5/12  has already been calculated in subsection  (3).
  • Due to stationarity,  Pr(Aν2)=Pr(A)=4/7  and  Pr(Bν)=Pr(B)=3/7  holds.
  • Thus,  the value of  5/9 is obtained for the sought inference probability according to the above equation.


(5)  According to subtask  (2)  with  p=1/2  for the probability of  A  in general:

Pr(A)=1q1.5q.
  • Thus from  Pr(A)=2/3  follows  q=0_.


(6)  In the case of statistical independence,  for example,  it must hold:

Pr(A|A)=Pr(A|B)=Pr(A).
  • From this follows  p=Pr(A)=2/3_  and accordingly  q=1p=1/3_.