Difference between revisions of "Aufgaben:Exercise 2.5: DSB-AM via a Gaussian channel"
m |
|||
Line 2: | Line 2: | ||
{{quiz-Header|Buchseite=Modulationsverfahren/Synchrondemodulation}} | {{quiz-Header|Buchseite=Modulationsverfahren/Synchrondemodulation}} | ||
− | [[File:EN_Mod_A_2_5.png|right|frame| | + | [[File:EN_Mod_A_2_5.png|right|frame|DSB-AM over a distorting channel]] |
− | + | The communication system considered here is composed of the following blocks: | |
− | * | + | *DSB-AM without carrier with $f_{\rm T} = 50 \ \rm kHz$ and $f_{\rm T} = 55 \ \rm kHz$: |
:$$ s(t) = q(t) \cdot \cos (2 \pi f_{\rm T} \hspace{0.05cm} t).$$ | :$$ s(t) = q(t) \cdot \cos (2 \pi f_{\rm T} \hspace{0.05cm} t).$$ | ||
− | * | + | * GGaussian bandpass channel; the magnitude $|f|$ in the exponent causes $H_K(–f) = H_K(f)$ to hold: |
:$$H_{\rm K}(f) = {\rm e}^{-\pi \cdot \hspace{0.05cm} \left (({|f| - f_{\rm M}})/{\Delta f_{\rm K}}\right)^2} ,\hspace{0.2cm} f_{\rm M} = 50\,{\rm kHz},\hspace{0.2cm} \Delta f_{\rm K} = 10\,{\rm kHz}\hspace{0.05cm}.$$ | :$$H_{\rm K}(f) = {\rm e}^{-\pi \cdot \hspace{0.05cm} \left (({|f| - f_{\rm M}})/{\Delta f_{\rm K}}\right)^2} ,\hspace{0.2cm} f_{\rm M} = 50\,{\rm kHz},\hspace{0.2cm} \Delta f_{\rm K} = 10\,{\rm kHz}\hspace{0.05cm}.$$ | ||
− | * | + | *The synchronous demodulator has optimal parameters such that the sink signal $v(t)$ completely coincides with the source signal $q(t)$ when $H_{\rm K}(f) = 1$ (ideal channel). |
− | + | On the page [[Modulation_Methods/Synchronous_Demodulation#Influence_of_linear_channel_distortions| Influence of linear channel distortions]] it was shown that the entire system is is sufficiently accurately characterized by the resulting frequency response | |
− | :$$H_{\rm MKD}(f) = {1}/{2} \cdot \big[ H_{\rm K}(f + f_{\rm T}) + H_{\rm K}(f - f_{\rm T})\big]$$ | + | :$$H_{\rm MKD}(f) = {1}/{2} \cdot \big[ H_{\rm K}(f + f_{\rm T}) + H_{\rm K}(f - f_{\rm T})\big]$$. |
− | + | Here the index stands for '''M'''odulator–'''K''' (for german "Kanal" i.e. Channel –'''D'''emodulator. | |
− | + | The source signal $q(t)$ is composed of two cosine oscillations: | |
:$$q(t) = 2\,{\rm V}\cdot \cos (2 \pi \cdot 1\,{\rm kHz} \cdot t)+ 3\,{\rm V}\cdot \cos (2 \pi \cdot 5\,{\rm kHz} \cdot t)\hspace{0.05cm}.$$ | :$$q(t) = 2\,{\rm V}\cdot \cos (2 \pi \cdot 1\,{\rm kHz} \cdot t)+ 3\,{\rm V}\cdot \cos (2 \pi \cdot 5\,{\rm kHz} \cdot t)\hspace{0.05cm}.$$ | ||
Line 26: | Line 26: | ||
− | '' | + | ''Hints:'' |
− | * | + | *This exercise belongs to the chapter [[Modulation_Methods/Synchronous_Demodulation|Synchronous Demodulation]]. |
− | * | + | *Particular reference is made to the page [[Modulation_Methods/Synchronous_Demodulation#Influence_of_linear_channel_distortions|Influence of linear channel distortions]]. |
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> |
Revision as of 18:38, 1 December 2021
The communication system considered here is composed of the following blocks:
- DSB-AM without carrier with $f_{\rm T} = 50 \ \rm kHz$ and $f_{\rm T} = 55 \ \rm kHz$:
- $$ s(t) = q(t) \cdot \cos (2 \pi f_{\rm T} \hspace{0.05cm} t).$$
- GGaussian bandpass channel; the magnitude $|f|$ in the exponent causes $H_K(–f) = H_K(f)$ to hold:
- $$H_{\rm K}(f) = {\rm e}^{-\pi \cdot \hspace{0.05cm} \left (({|f| - f_{\rm M}})/{\Delta f_{\rm K}}\right)^2} ,\hspace{0.2cm} f_{\rm M} = 50\,{\rm kHz},\hspace{0.2cm} \Delta f_{\rm K} = 10\,{\rm kHz}\hspace{0.05cm}.$$
- The synchronous demodulator has optimal parameters such that the sink signal $v(t)$ completely coincides with the source signal $q(t)$ when $H_{\rm K}(f) = 1$ (ideal channel).
On the page Influence of linear channel distortions it was shown that the entire system is is sufficiently accurately characterized by the resulting frequency response
- $$H_{\rm MKD}(f) = {1}/{2} \cdot \big[ H_{\rm K}(f + f_{\rm T}) + H_{\rm K}(f - f_{\rm T})\big]$$.
Here the index stands for Modulator–K (for german "Kanal" i.e. Channel –Demodulator.
The source signal $q(t)$ is composed of two cosine oscillations:
- $$q(t) = 2\,{\rm V}\cdot \cos (2 \pi \cdot 1\,{\rm kHz} \cdot t)+ 3\,{\rm V}\cdot \cos (2 \pi \cdot 5\,{\rm kHz} \cdot t)\hspace{0.05cm}.$$
Hints:
- This exercise belongs to the chapter Synchronous Demodulation.
- Particular reference is made to the page Influence of linear channel distortions.
Questions
Musterlösung
(1) Die angegebene Gleichung besagt, dass der BP–Frequenzgang $H_{\rm K}(f)$ jeweils um die Trägerfrequenz $f_{\rm T}$ nach links und rechts verschoben und die beiden Anteile aufaddiert werden müssen.
- Es ist noch der Faktor $1/2$ zu berücksichtigen (siehe Skizze).
- Bei niedrigen Frequenzen ergibt sich dann eine Gaußfunktion um die Mittenfrequenz „0”:
- $$H_{\rm MKD}(f) = {\rm e}^{-\pi \cdot \hspace{0.05cm} \left ({f}/{\Delta f_{\rm K}}\right)^2} \hspace{0.05cm}.$$
- Die beiden Anteile bei $±2f_{\rm T}$ müssen nicht weiter betrachtet werden. Für die zwei gesuchten Frequenzen $f_1 = 1\ \rm kHz$ und $f_5 = 5 \ \rm kHz$ erhält man:
- $$ H_{\rm MKD}(f = f_1) = {\rm e}^{-\pi \cdot \hspace{0.05cm} \left (\frac{1\,{\rm kHz}}{10\,{\rm kHz}}\right)^2} = {\rm e}^{-\pi/100}\hspace{0.15cm}\underline {\approx 0.969} \hspace{0.05cm},$$
- $$H_{\rm MKD}(f = f_5) = {\rm e}^{-\pi \cdot \hspace{0.05cm} \left (\frac{5\,{\rm kHz}}{10\,{\rm kHz}}\right)^2} = {\rm e}^{-\pi/4} \hspace{0.3cm}\hspace{0.15cm}\underline {\approx 0.456} \hspace{0.05cm}.$$
(2) Mit $ω_1 = 2π · 1\ \rm kHz$ und $ω_5 = 2π · 5 \ \rm kHz$ gilt:
- $$ v(t) = 0.969 \cdot 2\,{\rm V}\cdot \cos (\omega_1 \cdot t)+ 0.456 \cdot 3\,{\rm V}\cdot \cos (\omega_5 \cdot t) = \underline { 1.938\,{\rm V}}\cdot \cos (\omega_1 \cdot t) + \hspace{0.15cm}\underline {1.368\,{\rm V}}\cdot \cos (\omega_5 \cdot t) \hspace{0.05cm}.$$
- Man erkennt, dass nun – im Gegensatz zum Quellensignal $q(t)$ – der Anteil bei $1 \ \rm kHz$ ⇒ $A_1 = 1.938 \ \rm V$ größer ist als der $5 \ \rm kHz$–Anteil ⇒ $A_5 = 1.368 \ \rm V$, da der Kanal die Frequenzen $49 \ \rm kHz$ und $51 \ \rm kHz$ weniger dämpft als die Spektralanteile bei $45 \ \rm kHz$ und $55 \ \rm kHz$.
(3) Die beiden um $±f_{\rm T}$ verschobenen Spektralfunktionen kommen nun nicht mehr direkt übereinander zu liegen, sondern sind um $10 \ \rm kHz$ gegeneinander versetzt.
- Der resultierende Frequenzgang $H_{\rm MKD}(f)$ ist somit nicht mehr gaußförmig, sondern es gilt entsprechend der unteren Skizze:
- $$H_{\rm MKD}(f ) = {1}/{2}\cdot \left[{\rm e}^{-\pi \cdot \hspace{0.05cm} \left (\frac{f - 5\,{\rm kHz}}{10\,{\rm kHz}}\right)^2}+{\rm e}^{-\pi \cdot \hspace{0.05cm} \left (\frac{f + 5\,{\rm kHz}}{10\,{\rm kHz}}\right)^2}\right]\hspace{0.05cm}.$$
- Für die Frequenzen $f_1$ und $f_5$ erhält man:
- $$H_{\rm MKD}(f = 1\,{\rm kHz}) = \frac{1}{2} \cdot \left[ H_{\rm K}(f = 56\,{\rm kHz}) + H_{\rm K}(f = -54\,{\rm kHz})\right]=$$
- $$\hspace{1.25cm}= \frac{1}{2}\cdot \left[{\rm e}^{-\pi \cdot \hspace{0.05cm} \left (\frac{56\, {\rm kHz}- 50\,{\rm kHz}}{10\,{\rm kHz}}\right)^2}+{\rm e}^{-\pi \cdot \hspace{0.05cm} \left (\frac{-54\, {\rm kHz}+ 50\,{\rm kHz}}{10\,{\rm kHz}}\right)^2}\right] = 0.161 + 0.302 \hspace{0.15cm}\underline {= 0.463}\hspace{0.05cm},$$
- $$H_{\rm MKD}(f = 5\,{\rm kHz}) = \frac{1}{2} \cdot \left[ H_{\rm K}(f = 60\,{\rm kHz}) + H_{\rm K}(f = -50\,{\rm kHz})\right]= \hspace{0.75cm}$$
- $$\hspace{1.25cm}= \frac{1}{2}\cdot \left[{\rm e}^{-\pi \cdot \hspace{0.05cm} \left (\frac{60\, {\rm kHz}- 50\,{\rm kHz}}{10\,{\rm kHz}}\right)^2}+{\rm e}^{-\pi \cdot \hspace{0.05cm} \left (\frac{-50\, {\rm kHz}+ 50\,{\rm kHz}}{10\,{\rm kHz}}\right)^2}\right] = 0.022 + 0.500 \hspace{0.15cm}\underline {= 0.521}\hspace{0.05cm}.$$
- Während bei $f_{\rm T} = f_{\rm M} = 50 \ \rm kHz$ der Synchrondemodulator die Information über das Nachrichtensignal aus beiden Seitenbändern in gleicher Weise gewinnt, liefert mit $f_{\rm T} = 55\ \rm kHz$ das untere Seitenband (USB) den größeren Beitrag.
- Zum Beispiel liegt das USB des $5 \ \rm kHz$–Anteils nun genau bei $f_{\rm M} = 50 \ \rm kHz$ und wird ungedämpft übertragen, während das OSB bei $60 \ \rm kHz$ starken Dämpfungen unterliegt.
(4) Mit dem Ergebnis der letzten Teilaufgabe erhält man:
- $$ A_1 = 0.463 \cdot 2\,{\rm V}\hspace{0.15cm}\underline { = 0.926\,{\rm V}}\hspace{0.05cm},$$
- $$A_5 = 0.521 \cdot 3\,{\rm V} \hspace{0.15cm}\underline {= 1.563\,{\rm V}}\hspace{0.05cm}.$$
- In diesem Fall sind die linearen Verzerrungen sogar weniger stark, da nun auch der $1 \ \rm kHz$–Anteil stärker gedämpft wird.
(5) Richtig ist JA:
- Mit der Trägerfrequenz $f_{\rm T} = f_{\rm M} = 50 \ \rm kHz$ wird der $5 \ \rm kHz$–Anteil stärker gedämpft als der $1 \ \rm kHz$–Anteil, während mit $f_{\rm T} = 55 \ {\rm kHz} \ne f_{\rm M}$ der $1 \ \rm kHz$–Anteil etwas mehr gedämpft wird.
- Wählt man nun zum Beispiel $f_{\rm T} \approx 54.5 \ \rm kHz$, so werden beide Anteile gleich gedämpft $($etwa um den Faktor $0.53)$ und es gibt keine / weniger Verzerrungen.
- Dieses Ergebnis gilt allerdings nur für das betrachtete Quellensignal. Ein anderes $q(t)$ mit ebenfalls zwei Spektralanteilen würde eine andere „optimale Trägerfrequenz” erfordern.
- Bei einem Nachrichtensignal mit drei oder mehr Spektrallinien würde es stets zu linearen Verzerrungen kommen.