Difference between revisions of "Aufgaben:Exercise 1.7Z: BARBARA Generator"
From LNTwww
m (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “) |
|||
(12 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Markov_Chains}} |
− | [[File:P_ID454__Sto_Z_1_7.png|right|BARBARA | + | [[File:P_ID454__Sto_Z_1_7.png|right|frame|$\rm BARBARA$ Generator]] |
− | + | Here we consider a ternary random generator with symbols A, B and R, which can be described by a homogeneous and stationary first order Markov chain. | |
− | + | *The transition probabilities can be taken from the sketched Markov diagram. | |
+ | *For the first three subtasks, p=1/4 should always hold. | ||
− | + | ||
− | * | + | Hints: |
+ | *The exercise belongs to the chapter [[Theory_of_Stochastic_Signals/Markov_Chains|Markov Chains]]. | ||
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Which of the following statements are true? |
|type="[]"} | |type="[]"} | ||
− | - | + | - The values of p>0 and q<1 are largely arbitrary. |
− | + | + | + For the transition probabilities, the following must hold: p+q=1. |
− | + | + | + All symbols have equal ergodic probabilities. |
− | - | + | - It holds here: Pr(A)=1/2,Pr(B)=1/3,Pr(R)=1/6. |
− | { | + | {What are the conditional probabilities p_{\rm A}, p_{\rm B} and p_{\rm C} that at times between ν+1 and ν+7 the sequence "\rm BARBARA" is output, <br>if one is at time ν in state A, B or R, respectively? Let p = 1/4. |
|type="{}"} | |type="{}"} | ||
− | p_{\rm A} \ = { 0.549 3% } \ \cdot 10^{-3} | + | $p_{\rm A} \ = \ { 0.549 3% } \ \cdot 10^{-3}$ |
− | p_{\rm B} \ = { 0. } \ \cdot 10^{-3} | + | $p_{\rm B} \ = \ { 0. } \ \cdot 10^{-3}$ |
− | p_{\rm C} \ = { 0.183 3% } \ \cdot 10^{-3} | + | $p_{\rm C} \ = \ { 0.183 3% } \ \cdot 10^{-3}$ |
− | { | + | {What is the overall probability that the generator outputs the sequence "$\rm BARBARA$"? Let p = 1/4 continue to hold. |
|type="{}"} | |type="{}"} | ||
− | $ | + | ${\rm Pr}(\rm BARBARA)\ = \ { 0.244 3% } \ \cdot 10^{-3}$ |
− | { | + | {How should the parameter p_{\rm opt} be chosen to make ${\rm Pr}(\rm BARBARA)$ as large as possible? <br>What is the resulting probability for "$\rm BARBARA$"? |
|type="{}"} | |type="{}"} | ||
− | p_{\rm opt} \ = { 0.8333 3% } | + | $p_{\rm opt} \ = \ $ { 0.8333 3% } |
− | p = p_{\rm opt}\hspace{-0.1cm}: \hspace{0.3cm}{\rm Pr}(BARBARA) | + | $p = p_{\rm opt}\hspace{-0.1cm}: \hspace{0.3cm}{\rm Pr}(\rm BARBARA)\ = \ { 22 3% } \ \cdot 10^{-3}$ |
</quiz> | </quiz> | ||
Line 41: | Line 43: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' Correct are <u>the second and third suggested solutions</u>: |
− | * | + | *The sum of all outgoing arrows must always be 1. Therefore q = 1 - p holds. |
− | * | + | *Because of the symmetry of the Markov diagram, the ergodic probabilities are all equal: |
:{\rm Pr}(A) ={\rm Pr}(B) ={\rm Pr}(R) = 1/3. | :{\rm Pr}(A) ={\rm Pr}(B) ={\rm Pr}(R) = 1/3. | ||
− | '''(2)''' | + | '''(2)''' If one is in the state B at the starting time $\nu=0$, because of {\rm Pr}(B\hspace{0.05cm}|\hspace{0.05cm}B) = 0 the state B is not possible at time \nu=1. |
+ | *One fails here already with the initial letter B: | ||
:p_{\rm B} \; \underline{ =0}. | :p_{\rm B} \; \underline{ =0}. | ||
− | + | *For the calculation of p_{\rm A} it should be noted: Starting from A one goes in the Markov diagram first to $B$ $($with probability $q)$, then five times clockwise $($each time with probability $p)$ and finally from R to $A$ $($with probability $q)$. Meaning: | |
− | :$$p_{\rm A} = q^2 \hspace{0.05cm}\cdot | + | :p_{\rm A} = q^2 \hspace{0.05cm}\cdot \hspace{0.05cm} p^5 = 3^2 / 4^7 \hspace{0.15cm}\underline {\approx 0.549 \hspace{0.05cm}\cdot \hspace{0.05cm} 10^{-3}}. |
− | In & | + | *In a similar way, one obtains: |
− | :$$p_{\rm R} = q \hspace{0.05cm}\cdot | + | :p_{\rm R} = q \hspace{0.05cm}\cdot \hspace{0.05cm} p^6 = 3 / 4^7 \hspace{0.15cm}\underline {\approx 0.183 \hspace{0.05cm}\cdot \hspace{0.05cm} 10^{-3}}. |
− | '''(3)''' | + | '''(3)''' By averaging over the conditional probabilities we obtain: |
− | :$${\rm Pr}(BARBARA) = p_{\rm A} \hspace{0.05cm}\cdot | + | :$${\rm Pr}(\rm BARBARA) = p_{\rm A} \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm Pr}(A) \hspace{0.1cm} + \hspace{0.1cm}p_{\rm B} \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm Pr}(B) \hspace{0.1cm} + \hspace{0.1cm}p_{\rm R} \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm Pr}(R).$$ |
− | + | *This leads to the result: | |
− | :$${\rm Pr}(BARBARA) = | + | :$${\rm Pr}(\rm BARBARA) = {1}/{3} \cdot \left( q^2 \hspace{0.05cm}\cdot \hspace{0.05cm} p^5 \hspace{0.1cm} +\hspace{0.1cm}0 \hspace{0.1cm} +\hspace{0.1cm}q \hspace{0.05cm}\cdot \hspace{0.05cm} p^6 \right) |
− | = \frac{q \hspace{0.05cm}\cdot | + | = \frac{q \hspace{0.05cm}\cdot \hspace{0.05cm} p^5 }{3} \cdot{p+q} |
− | = \hspace{-0.15cm} \frac{q \hspace{0.05cm}\cdot | + | = \hspace{-0.15cm} \frac{q \hspace{0.05cm}\cdot \hspace{0.05cm} p^5 }{3} |
− | \hspace{0.15cm}\underline { \approx 0.244 | + | \hspace{0.15cm}\underline { \approx 0.244 \hspace{0.05cm}\cdot \hspace{0.05cm} 10^{-3}}.$$ |
+ | '''(4)''' The probability calculated in '''(3)''' is p^5 \cdot (1-p)/3, where q= 1-p is considered. | ||
− | + | *By setting the differential to zero, we obtain the governing equation: | |
− | :$$5 \cdot p^4 - 6 \cdot p^5 = 0 \hspace{0.5cm} \Rightarrow | + | :5 \cdot p^4 - 6 \cdot p^5 = 0 \hspace{0.5cm} \Rightarrow \hspace{0.5cm} p_{\rm opt} = 5/6 \hspace{0.15cm}\underline { \approx \rm 0.833}. |
− | + | *This results in a value that is larger than the subtask '''(3)''' by a factor 90 approximately: | |
− | :$${\rm Pr}(BARBARA) | + | :$${\rm Pr}\rm (BARBARA) \hspace{0.15cm}\underline { \approx 22 \hspace{0.05cm}\cdot \hspace{0.05cm} 10^{-3}}.$$ |
{{ML-Fuß}} | {{ML-Fuß}} | ||
Line 74: | Line 78: | ||
− | [[Category: | + | [[Category:Theory of Stochastic Signals: Exercises|^1.4 Markov Chains |
^]] | ^]] |
Latest revision as of 18:29, 2 December 2021
Here we consider a ternary random generator with symbols A, B and R, which can be described by a homogeneous and stationary first order Markov chain.
- The transition probabilities can be taken from the sketched Markov diagram.
- For the first three subtasks, p = 1/4 should always hold.
Hints:
- The exercise belongs to the chapter Markov Chains.
Questions
Musterlösung
(1) Correct are the second and third suggested solutions:
- The sum of all outgoing arrows must always be 1. Therefore q = 1 - p holds.
- Because of the symmetry of the Markov diagram, the ergodic probabilities are all equal:
- {\rm Pr}(A) ={\rm Pr}(B) ={\rm Pr}(R) = 1/3.
(2) If one is in the state B at the starting time \nu=0, because of {\rm Pr}(B\hspace{0.05cm}|\hspace{0.05cm}B) = 0 the state B is not possible at time \nu=1.
- One fails here already with the initial letter B:
- p_{\rm B} \; \underline{ =0}.
- For the calculation of p_{\rm A} it should be noted: Starting from A one goes in the Markov diagram first to B (with probability q), then five times clockwise (each time with probability p) and finally from R to A (with probability q). Meaning:
- p_{\rm A} = q^2 \hspace{0.05cm}\cdot \hspace{0.05cm} p^5 = 3^2 / 4^7 \hspace{0.15cm}\underline {\approx 0.549 \hspace{0.05cm}\cdot \hspace{0.05cm} 10^{-3}}.
- In a similar way, one obtains:
- p_{\rm R} = q \hspace{0.05cm}\cdot \hspace{0.05cm} p^6 = 3 / 4^7 \hspace{0.15cm}\underline {\approx 0.183 \hspace{0.05cm}\cdot \hspace{0.05cm} 10^{-3}}.
(3) By averaging over the conditional probabilities we obtain:
- {\rm Pr}(\rm BARBARA) = p_{\rm A} \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm Pr}(A) \hspace{0.1cm} + \hspace{0.1cm}p_{\rm B} \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm Pr}(B) \hspace{0.1cm} + \hspace{0.1cm}p_{\rm R} \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm Pr}(R).
- This leads to the result:
- {\rm Pr}(\rm BARBARA) = {1}/{3} \cdot \left( q^2 \hspace{0.05cm}\cdot \hspace{0.05cm} p^5 \hspace{0.1cm} +\hspace{0.1cm}0 \hspace{0.1cm} +\hspace{0.1cm}q \hspace{0.05cm}\cdot \hspace{0.05cm} p^6 \right) = \frac{q \hspace{0.05cm}\cdot \hspace{0.05cm} p^5 }{3} \cdot{p+q} = \hspace{-0.15cm} \frac{q \hspace{0.05cm}\cdot \hspace{0.05cm} p^5 }{3} \hspace{0.15cm}\underline { \approx 0.244 \hspace{0.05cm}\cdot \hspace{0.05cm} 10^{-3}}.
(4) The probability calculated in (3) is p^5 \cdot (1-p)/3, where q= 1-p is considered.
- By setting the differential to zero, we obtain the governing equation:
- 5 \cdot p^4 - 6 \cdot p^5 = 0 \hspace{0.5cm} \Rightarrow \hspace{0.5cm} p_{\rm opt} = 5/6 \hspace{0.15cm}\underline { \approx \rm 0.833}.
- This results in a value that is larger than the subtask (3) by a factor 90 approximately:
- {\rm Pr}\rm (BARBARA) \hspace{0.15cm}\underline { \approx 22 \hspace{0.05cm}\cdot \hspace{0.05cm} 10^{-3}}.