Difference between revisions of "Aufgaben:Exercise 2.6: Free Space Attenuation"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Modulationsverfahren/Synchrondemodulation }} [[File:|right|]] ===Fragebogen=== <quiz display=simple> {Multiple-Choice Frage |type…“)
 
 
(22 intermediate revisions by 5 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:|right|]]
+
[[File:P_ID1016__Mod_A_2_6.jpg|right|frame|Photo of a transmitter]]
 +
A shortwave transmitter operated according to the modulation method&nbsp; "DSB-AM with carrier" works with carrier frequency &nbsp;$f_{\rm T} = 20 \ \rm MHz$&nbsp; and transmit power&nbsp;$P_{\rm S} = 100\ \rm  kW$.&nbsp; It is designed for a low-frequency bandwidth of &nbsp;$B_{\rm NF} = 8 \ \rm kHz$.
  
 +
For test operation,&nbsp; a mobile receiver is used, which operates with a synchronous demodulator.&nbsp;  If this is located at distance &nbsp; $d$&nbsp; from the transmitter,&nbsp; the attenuation function of the transmission channel can be approximated as follows:
 +
:$$\frac{a_{\rm K}(d, f)}{\rm dB} = 34 + 20 \cdot {\rm lg }\hspace{0.2cm}\frac{d}{\rm km} + 20 \cdot {\rm lg }\hspace{0.2cm}\frac{f}{\rm MHz}
 +
\hspace{0.05cm}.$$
 +
This equation describes so-called&nbsp; '''free space attenuation''',&nbsp; which also depends on the (carrier) frequency.
  
===Fragebogen===
+
It can be assumed that the entire DSB-AM spectrum is attenuated like the carrier frequency.&nbsp;  This means that
 +
*the slightly larger attenuation of the upper sideband (USB), and
 +
*the slightly smaller attenuation of the lower sideband (LSB)
 +
 
 +
 
 +
are compensated for by a corresponding pre-distortion at the transmitter.
 +
 
 +
Let the effective noise power density at the receiver be &nbsp;$N_0 = 10^{–14}  \ \rm W/Hz.$
 +
 
 +
 
 +
For the first two subtasks,&nbsp; it is assumed that the transmitter transmits only the carrier,&nbsp; which is equivalent to the modulation depth being &nbsp;$m = 0$.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
Hints:
 +
*This exercise belongs to the chapter &nbsp; [[Modulation_Methods/Synchronous_Demodulation|Synchronous Demodulation]].
 +
*Particular reference is made to the page&nbsp;  [[Modulation_Methods/Synchronous_Demodulation#Sink_SNR_and_the_performance_parameter|Sink SNR and the performance parameter]].
 +
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{ What power is received at a distance &nbsp;$d = 10 \ \rm km$&nbsp; from the transmitter when only the carrier is transmitted &nbsp;$(m = 0)$?
|type="[]"}
+
|type="{}"}
- Falsch
+
$P_{\rm E} \ = \ $ { 1 3% } $\ \rm mW$
+ Richtig
 
  
 +
{ At what distance &nbsp;$d$&nbsp; from the transmitter is the receiver located when the received power is &nbsp;$P_{\rm E} = 100 \ \rm &micro; W$??
 +
|type="{}"}
 +
$d \ = \ $ { 31.6 3% } $\ \rm km$
  
{Input-Box Frage
+
{Which sink SNR results from the distance &nbsp;$d$&nbsp; calculated in subtask&nbsp; '''(2)'''&nbsp; when the modulation depth is &nbsp;$m = 0.5$&nbsp;?
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$10 · \lg ρ_v \ = \ $ { 51.5 3% } $\ \text{dB}$
  
 +
{What is the minimum modulation depth &nbsp;$m$&nbsp; that can be chosen for a resulting sink-to-noise ratio of &nbsp;$60  \ \rm dB$&nbsp;?
 +
|type="{}"}
 +
$m_{\min} \ = \ $ { 2.83 5% } 
  
 +
{Which of the following statements are true?
 +
|type="[]"}
 +
+ "DSB–AM with carrier"&nbsp; does not make sense for energy reasons if a synchronous demodulator is used.
 +
- "DSB–AM without carrier"&nbsp; does not make sense for energy reasons if a synchronous demodulator is used.
 +
+ A small carrier component can be helpful for the required frequency and phase synchronization.
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp; According to the equation for free space attenuation,&nbsp; when &nbsp; $d = 10\ \rm  km$&nbsp; and&nbsp; $f_{\rm T} = 20 \ \rm  MHz$,&nbsp; then:
'''2.'''
+
:$$\frac{a_{\rm K}(d, f_{\rm T})}{\rm dB}  =  34 + 20 \cdot {\rm lg }\hspace{0.1cm}\frac{d}{\rm km} + 20 \cdot {\rm lg }\hspace{0.1cm}\frac{f_{\rm T}}{\rm MHz}=  34 + 20 \cdot {\rm lg }\hspace{0.1cm}(10) + 20 \cdot {\rm lg }\hspace{0.1cm}(20)\approx 80\hspace{0.1cm}{\rm dB} \hspace{0.05cm}.$$
'''3.'''
+
*This corresponds to a power reduction by a factor of&nbsp; $10^{8}$:
'''4.'''
+
:$$P_{\rm E}= 10^{-8} \cdot P_{\rm S}= 10^{-8} \cdot 100\,{\rm kW}\hspace{0.15cm}\underline {= 1\, {\rm mW} \hspace{0.05cm}}.$$
'''5.'''
+
 
'''6.'''
+
 
'''7.'''
+
 
 +
'''(2)'''&nbsp; From&nbsp; $P_{\rm S} = 10^5 \ \rm  W$,&nbsp; $P_{\rm E} = 10{^–4}\ \rm  W$&nbsp; follows a free space attenuation of&nbsp; $90 \ \rm  dB$.&nbsp; From this,&nbsp; we further obtain:
 +
:$$20 \cdot {\rm lg }\hspace{0.1cm}\frac{d}{\rm km} = ( 90-34 - 26)\hspace{0.1cm}{\rm dB}= 30\,{\rm dB}\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm} d = 10^{1.5}\,{\rm km}\hspace{0.15cm}\underline { = 31.6\,{\rm km}\hspace{0.05cm}}.$$
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; For DSB–AM without carrier,&nbsp; that is,&nbsp; for a modulation depth&nbsp; $m → ∞$,&nbsp; the following would hold:
 +
:$$ \rho_{v } = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{{N_0} \cdot B_{\rm NF}} = \frac{ P_{\rm E}}{{N_0} \cdot B_{\rm NF}}= \frac{10^{-4}\,{\rm W}}{10^{-14}\,{\rm W/Hz}\cdot 8 \cdot 10^{3}\,{\rm Hz} } = 1.25 \cdot 10^6\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg }\hspace{0.1cm}\rho_{v } \approx 61\,{\rm dB}\hspace{0.05cm}.$$
 +
*With modulation depth&nbsp; $m = 0.5$&nbsp; the sink SNR becomes smaller by a factor of&nbsp; $[1 +{2}/{m^2}]^{-1} = {1}/{9}$&nbsp;.&nbsp; Thus,&nbsp; the signal-to-noise ratio at the sink is also smaller:
 +
:$$ 10 \cdot {\rm lg }\hspace{0.1cm}\rho_{v } = 61\,{\rm dB}- 10 \cdot {\rm lg }\hspace{0.1cm}(9) \hspace{0.15cm}\underline {\approx 51.5\,{\rm dB}\hspace{0.05cm}}.$$
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; According to the calculations in subtask&nbsp; '''(3)''',&nbsp; the following condition must be satisfied:
 +
:$$ 10 \cdot {\rm lg }\hspace{0.1cm}\left({1 + {2}/{m^2}}\right) < 1\,{\rm dB}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} 1 +{2}/{m^2} < 10^{0.1}=1.259
 +
\hspace{0.3cm} \Rightarrow \hspace{0.3cm}{2}/{m^2} < 0.259 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} m > \sqrt{8}\approx 2.83 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} m_{\rm min} \hspace{0.15cm}\underline {= 2.83} \hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; <u>Answers 1 and 3</u>&nbsp; are correct:
 +
*When using a synchronous demodulator, the addition of the carrier makes no sense unless the former is useful for the required carrier recovery.
 +
*Since the carrier cannot be used for demodulation,&nbsp; only a fraction of the transmit power is available for demodulation &nbsp; $($one third for &nbsp; $m = 1$,&nbsp; one ninth for&nbsp;  $m = 0.5)$.
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu  Modulationsverfahren|^2.2 Synchrondemodulation^]]
+
[[Category:Modulation Methods: Exercises|^2.2 Synchronous Demodulation^]]

Latest revision as of 17:38, 8 December 2021

Photo of a transmitter

A shortwave transmitter operated according to the modulation method  "DSB-AM with carrier" works with carrier frequency  $f_{\rm T} = 20 \ \rm MHz$  and transmit power $P_{\rm S} = 100\ \rm kW$.  It is designed for a low-frequency bandwidth of  $B_{\rm NF} = 8 \ \rm kHz$.

For test operation,  a mobile receiver is used, which operates with a synchronous demodulator.  If this is located at distance   $d$  from the transmitter,  the attenuation function of the transmission channel can be approximated as follows:

$$\frac{a_{\rm K}(d, f)}{\rm dB} = 34 + 20 \cdot {\rm lg }\hspace{0.2cm}\frac{d}{\rm km} + 20 \cdot {\rm lg }\hspace{0.2cm}\frac{f}{\rm MHz} \hspace{0.05cm}.$$

This equation describes so-called  free space attenuation,  which also depends on the (carrier) frequency.

It can be assumed that the entire DSB-AM spectrum is attenuated like the carrier frequency.  This means that

  • the slightly larger attenuation of the upper sideband (USB), and
  • the slightly smaller attenuation of the lower sideband (LSB)


are compensated for by a corresponding pre-distortion at the transmitter.

Let the effective noise power density at the receiver be  $N_0 = 10^{–14} \ \rm W/Hz.$


For the first two subtasks,  it is assumed that the transmitter transmits only the carrier,  which is equivalent to the modulation depth being  $m = 0$.




Hints:


Questions

1

What power is received at a distance  $d = 10 \ \rm km$  from the transmitter when only the carrier is transmitted  $(m = 0)$?

$P_{\rm E} \ = \ $

$\ \rm mW$

2

At what distance  $d$  from the transmitter is the receiver located when the received power is  $P_{\rm E} = 100 \ \rm µ W$??

$d \ = \ $

$\ \rm km$

3

Which sink SNR results from the distance  $d$  calculated in subtask  (2)  when the modulation depth is  $m = 0.5$ ?

$10 · \lg ρ_v \ = \ $

$\ \text{dB}$

4

What is the minimum modulation depth  $m$  that can be chosen for a resulting sink-to-noise ratio of  $60 \ \rm dB$ ?

$m_{\min} \ = \ $

5

Which of the following statements are true?

"DSB–AM with carrier"  does not make sense for energy reasons if a synchronous demodulator is used.
"DSB–AM without carrier"  does not make sense for energy reasons if a synchronous demodulator is used.
A small carrier component can be helpful for the required frequency and phase synchronization.


Solution

(1)  According to the equation for free space attenuation,  when   $d = 10\ \rm km$  and  $f_{\rm T} = 20 \ \rm MHz$,  then:

$$\frac{a_{\rm K}(d, f_{\rm T})}{\rm dB} = 34 + 20 \cdot {\rm lg }\hspace{0.1cm}\frac{d}{\rm km} + 20 \cdot {\rm lg }\hspace{0.1cm}\frac{f_{\rm T}}{\rm MHz}= 34 + 20 \cdot {\rm lg }\hspace{0.1cm}(10) + 20 \cdot {\rm lg }\hspace{0.1cm}(20)\approx 80\hspace{0.1cm}{\rm dB} \hspace{0.05cm}.$$
  • This corresponds to a power reduction by a factor of  $10^{8}$:
$$P_{\rm E}= 10^{-8} \cdot P_{\rm S}= 10^{-8} \cdot 100\,{\rm kW}\hspace{0.15cm}\underline {= 1\, {\rm mW} \hspace{0.05cm}}.$$


(2)  From  $P_{\rm S} = 10^5 \ \rm W$,  $P_{\rm E} = 10{^–4}\ \rm W$  follows a free space attenuation of  $90 \ \rm dB$.  From this,  we further obtain:

$$20 \cdot {\rm lg }\hspace{0.1cm}\frac{d}{\rm km} = ( 90-34 - 26)\hspace{0.1cm}{\rm dB}= 30\,{\rm dB}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} d = 10^{1.5}\,{\rm km}\hspace{0.15cm}\underline { = 31.6\,{\rm km}\hspace{0.05cm}}.$$


(3)  For DSB–AM without carrier,  that is,  for a modulation depth  $m → ∞$,  the following would hold:

$$ \rho_{v } = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{{N_0} \cdot B_{\rm NF}} = \frac{ P_{\rm E}}{{N_0} \cdot B_{\rm NF}}= \frac{10^{-4}\,{\rm W}}{10^{-14}\,{\rm W/Hz}\cdot 8 \cdot 10^{3}\,{\rm Hz} } = 1.25 \cdot 10^6\hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg }\hspace{0.1cm}\rho_{v } \approx 61\,{\rm dB}\hspace{0.05cm}.$$
  • With modulation depth  $m = 0.5$  the sink SNR becomes smaller by a factor of  $[1 +{2}/{m^2}]^{-1} = {1}/{9}$ .  Thus,  the signal-to-noise ratio at the sink is also smaller:
$$ 10 \cdot {\rm lg }\hspace{0.1cm}\rho_{v } = 61\,{\rm dB}- 10 \cdot {\rm lg }\hspace{0.1cm}(9) \hspace{0.15cm}\underline {\approx 51.5\,{\rm dB}\hspace{0.05cm}}.$$


(4)  According to the calculations in subtask  (3),  the following condition must be satisfied:

$$ 10 \cdot {\rm lg }\hspace{0.1cm}\left({1 + {2}/{m^2}}\right) < 1\,{\rm dB}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} 1 +{2}/{m^2} < 10^{0.1}=1.259 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{2}/{m^2} < 0.259 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} m > \sqrt{8}\approx 2.83 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} m_{\rm min} \hspace{0.15cm}\underline {= 2.83} \hspace{0.05cm}.$$


(5)  Answers 1 and 3  are correct:

  • When using a synchronous demodulator, the addition of the carrier makes no sense unless the former is useful for the required carrier recovery.
  • Since the carrier cannot be used for demodulation,  only a fraction of the transmit power is available for demodulation   $($one third for   $m = 1$,  one ninth for  $m = 0.5)$.