Difference between revisions of "Aufgaben:Exercise 2.6: Free Space Attenuation"

From LNTwww
 
(21 intermediate revisions by 5 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1016__Mod_A_2_6.jpg|right|]]
+
[[File:P_ID1016__Mod_A_2_6.jpg|right|frame|Photo of a transmitter]]
Ein gemäß dem Modulationsverfahren „ZSB–AM mit Träger” betriebener Kurzwellensender arbeitet mit der Trägerfrequenz $f_T = 20 MHz$ und der Sendeleistung $P_S = 100 kW$. Er ist für eine Bandbreite von $B_{NF} = 8 kHz$ ausgelegt.
+
A shortwave transmitter operated according to the modulation method  "DSB-AM with carrier" works with carrier frequency  $f_{\rm T} = 20 \ \rm MHz$  and transmit power $P_{\rm S} = 100\ \rm  kW$.  It is designed for a low-frequency bandwidth of  $B_{\rm NF} = 8 \ \rm kHz$.
  
 +
For test operation,  a mobile receiver is used, which operates with a synchronous demodulator.   If this is located at distance   $d$  from the transmitter,  the attenuation function of the transmission channel can be approximated as follows:
 +
:$$\frac{a_{\rm K}(d, f)}{\rm dB} = 34 + 20 \cdot {\rm lg }\hspace{0.2cm}\frac{d}{\rm km} + 20 \cdot {\rm lg }\hspace{0.2cm}\frac{f}{\rm MHz}
 +
\hspace{0.05cm}.$$
 +
This equation describes so-called  '''free space attenuation''',  which also depends on the (carrier) frequency.
  
Zum Testbetrieb wird ein mobiler Empfänger eingesetzt, der mit einem Synchrondemodulator arbeitet. Befindet sich dieser in der Distanz ''d'' zum Sender, so kann die Dämpfungsfunktion des Übertragungskanals wie folgt angenähert werden:
+
It can be assumed that the entire DSB-AM spectrum is attenuated like the carrier frequency.   This means that
$$\frac{a_K(d,f)}{dB} = 34 + 20 \cdot lg \frac{d}{km} + 20 \cdot \frac{f}{MHz}.$$
+
*the slightly larger attenuation of the upper sideband (USB), and
Die Gleichung beschreibt die so genannte Freiraumdämpfung, die auch von der (Träger-)Frequenz abhängt.
+
*the slightly smaller attenuation of the lower sideband (LSB)
  
  
Es kann davon ausgegangen werden, dass das gesamte ZSB–AM–Spektrum wie die Trägerfrequenz gedämpft wird. Das bedeutet, dass die etwas größere Dämpfung des OSB bzw. die geringfügig kleinere Dämpfung des USB durch eine entsprechende Vorverzerrung beim Sender ausgeglichen wird.
+
are compensated for by a corresponding pre-distortion at the transmitter.
  
Die am Empfänger wirksame Rauschleistungsdichte sei $N_0 = 10^{–14} W/Hz.$
+
Let the effective noise power density at the receiver be  $N_0 = 10^{–14} \ \rm W/Hz.$
  
  
Für die Teilaufgaben a) und b) wird vorausgesetzt, dass der Sender nur den Träger überträgt, das heißt, dass der Modulationsgrad m = 0 ist.
+
For the first two subtasks,  it is assumed that the transmitter transmits only the carrier,  which is equivalent to the modulation depth being  $m = 0$.
  
'''Hinweis:''' Diese Aufgabe bezieht sich auf die letzten Theorieseiten von [http://en.lntwww.de/Modulationsverfahren/Synchrondemodulation Kapitel 2.2].  
+
 
===Fragebogen===
+
 
 +
 
 +
 
 +
 
 +
Hints:  
 +
*This exercise belongs to the chapter   [[Modulation_Methods/Synchronous_Demodulation|Synchronous Demodulation]].
 +
*Particular reference is made to the page   [[Modulation_Methods/Synchronous_Demodulation#Sink_SNR_and_the_performance_parameter|Sink SNR and the performance parameter]].
 +
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{ What power is received at a distance &nbsp;$d = 10 \ \rm km$&nbsp; from the transmitter when only the carrier is transmitted &nbsp;$(m = 0)$?
|type="[]"}
+
|type="{}"}
- Falsch
+
$P_{\rm E} \ = \ $ { 1 3% } $\ \rm mW$
+ Richtig
 
  
 +
{ At what distance &nbsp;$d$&nbsp; from the transmitter is the receiver located when the received power is &nbsp;$P_{\rm E} = 100 \ \rm &micro; W$??
 +
|type="{}"}
 +
$d \ = \ $ { 31.6 3% } $\ \rm km$
  
{Input-Box Frage
+
{Which sink SNR results from the distance &nbsp;$d$&nbsp; calculated in subtask&nbsp; '''(2)'''&nbsp; when the modulation depth is &nbsp;$m = 0.5$&nbsp;?
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$10 · \lg ρ_v \ = \ $ { 51.5 3% } $\ \text{dB}$
  
 +
{What is the minimum modulation depth &nbsp;$m$&nbsp; that can be chosen for a resulting sink-to-noise ratio of &nbsp;$60  \ \rm dB$&nbsp;?
 +
|type="{}"}
 +
$m_{\min} \ = \ $ { 2.83 5% } 
  
 +
{Which of the following statements are true?
 +
|type="[]"}
 +
+ "DSB–AM with carrier"&nbsp; does not make sense for energy reasons if a synchronous demodulator is used.
 +
- "DSB–AM without carrier"&nbsp; does not make sense for energy reasons if a synchronous demodulator is used.
 +
+ A small carrier component can be helpful for the required frequency and phase synchronization.
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp; According to the equation for free space attenuation,&nbsp; when &nbsp; $d = 10\ \rm  km$&nbsp; and&nbsp; $f_{\rm T} = 20 \ \rm  MHz$,&nbsp; then:
'''2.'''
+
:$$\frac{a_{\rm K}(d, f_{\rm T})}{\rm dB}  =  34 + 20 \cdot {\rm lg }\hspace{0.1cm}\frac{d}{\rm km} + 20 \cdot {\rm lg }\hspace{0.1cm}\frac{f_{\rm T}}{\rm MHz}=  34 + 20 \cdot {\rm lg }\hspace{0.1cm}(10) + 20 \cdot {\rm lg }\hspace{0.1cm}(20)\approx 80\hspace{0.1cm}{\rm dB} \hspace{0.05cm}.$$
'''3.'''
+
*This corresponds to a power reduction by a factor of&nbsp; $10^{8}$:
'''4.'''
+
:$$P_{\rm E}= 10^{-8} \cdot P_{\rm S}= 10^{-8} \cdot 100\,{\rm kW}\hspace{0.15cm}\underline {= 1\, {\rm mW} \hspace{0.05cm}}.$$
'''5.'''
+
 
'''6.'''
+
 
'''7.'''
+
 
 +
'''(2)'''&nbsp; From&nbsp; $P_{\rm S} = 10^5 \ \rm  W$,&nbsp; $P_{\rm E} = 10{^–4}\ \rm  W$&nbsp; follows a free space attenuation of&nbsp; $90 \ \rm  dB$.&nbsp; From this,&nbsp; we further obtain:
 +
:$$20 \cdot {\rm lg }\hspace{0.1cm}\frac{d}{\rm km} = ( 90-34 - 26)\hspace{0.1cm}{\rm dB}= 30\,{\rm dB}\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm} d = 10^{1.5}\,{\rm km}\hspace{0.15cm}\underline { = 31.6\,{\rm km}\hspace{0.05cm}}.$$
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; For DSB–AM without carrier,&nbsp; that is,&nbsp; for a modulation depth&nbsp; $m → ∞$,&nbsp; the following would hold:
 +
:$$ \rho_{v } = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{{N_0} \cdot B_{\rm NF}} = \frac{ P_{\rm E}}{{N_0} \cdot B_{\rm NF}}= \frac{10^{-4}\,{\rm W}}{10^{-14}\,{\rm W/Hz}\cdot 8 \cdot 10^{3}\,{\rm Hz} } = 1.25 \cdot 10^6\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg }\hspace{0.1cm}\rho_{v } \approx 61\,{\rm dB}\hspace{0.05cm}.$$
 +
*With modulation depth&nbsp; $m = 0.5$&nbsp; the sink SNR becomes smaller by a factor of&nbsp; $[1 +{2}/{m^2}]^{-1} = {1}/{9}$&nbsp;.&nbsp; Thus,&nbsp; the signal-to-noise ratio at the sink is also smaller:
 +
:$$ 10 \cdot {\rm lg }\hspace{0.1cm}\rho_{v } = 61\,{\rm dB}- 10 \cdot {\rm lg }\hspace{0.1cm}(9) \hspace{0.15cm}\underline {\approx 51.5\,{\rm dB}\hspace{0.05cm}}.$$
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; According to the calculations in subtask&nbsp; '''(3)''',&nbsp; the following condition must be satisfied:
 +
:$$ 10 \cdot {\rm lg }\hspace{0.1cm}\left({1 + {2}/{m^2}}\right) < 1\,{\rm dB}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} 1 +{2}/{m^2} < 10^{0.1}=1.259
 +
\hspace{0.3cm} \Rightarrow \hspace{0.3cm}{2}/{m^2} < 0.259 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} m > \sqrt{8}\approx 2.83 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} m_{\rm min} \hspace{0.15cm}\underline {= 2.83} \hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; <u>Answers 1 and 3</u>&nbsp; are correct:
 +
*When using a synchronous demodulator, the addition of the carrier makes no sense unless the former is useful for the required carrier recovery.
 +
*Since the carrier cannot be used for demodulation,&nbsp; only a fraction of the transmit power is available for demodulation &nbsp; $($one third for &nbsp; $m = 1$,&nbsp; one ninth for&nbsp;  $m = 0.5)$.
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu  Modulationsverfahren|^2.2 Synchrondemodulation^]]
+
[[Category:Modulation Methods: Exercises|^2.2 Synchronous Demodulation^]]

Latest revision as of 17:38, 8 December 2021

Photo of a transmitter

A shortwave transmitter operated according to the modulation method  "DSB-AM with carrier" works with carrier frequency  $f_{\rm T} = 20 \ \rm MHz$  and transmit power $P_{\rm S} = 100\ \rm kW$.  It is designed for a low-frequency bandwidth of  $B_{\rm NF} = 8 \ \rm kHz$.

For test operation,  a mobile receiver is used, which operates with a synchronous demodulator.  If this is located at distance   $d$  from the transmitter,  the attenuation function of the transmission channel can be approximated as follows:

$$\frac{a_{\rm K}(d, f)}{\rm dB} = 34 + 20 \cdot {\rm lg }\hspace{0.2cm}\frac{d}{\rm km} + 20 \cdot {\rm lg }\hspace{0.2cm}\frac{f}{\rm MHz} \hspace{0.05cm}.$$

This equation describes so-called  free space attenuation,  which also depends on the (carrier) frequency.

It can be assumed that the entire DSB-AM spectrum is attenuated like the carrier frequency.  This means that

  • the slightly larger attenuation of the upper sideband (USB), and
  • the slightly smaller attenuation of the lower sideband (LSB)


are compensated for by a corresponding pre-distortion at the transmitter.

Let the effective noise power density at the receiver be  $N_0 = 10^{–14} \ \rm W/Hz.$


For the first two subtasks,  it is assumed that the transmitter transmits only the carrier,  which is equivalent to the modulation depth being  $m = 0$.




Hints:


Questions

1

What power is received at a distance  $d = 10 \ \rm km$  from the transmitter when only the carrier is transmitted  $(m = 0)$?

$P_{\rm E} \ = \ $

$\ \rm mW$

2

At what distance  $d$  from the transmitter is the receiver located when the received power is  $P_{\rm E} = 100 \ \rm µ W$??

$d \ = \ $

$\ \rm km$

3

Which sink SNR results from the distance  $d$  calculated in subtask  (2)  when the modulation depth is  $m = 0.5$ ?

$10 · \lg ρ_v \ = \ $

$\ \text{dB}$

4

What is the minimum modulation depth  $m$  that can be chosen for a resulting sink-to-noise ratio of  $60 \ \rm dB$ ?

$m_{\min} \ = \ $

5

Which of the following statements are true?

"DSB–AM with carrier"  does not make sense for energy reasons if a synchronous demodulator is used.
"DSB–AM without carrier"  does not make sense for energy reasons if a synchronous demodulator is used.
A small carrier component can be helpful for the required frequency and phase synchronization.


Solution

(1)  According to the equation for free space attenuation,  when   $d = 10\ \rm km$  and  $f_{\rm T} = 20 \ \rm MHz$,  then:

$$\frac{a_{\rm K}(d, f_{\rm T})}{\rm dB} = 34 + 20 \cdot {\rm lg }\hspace{0.1cm}\frac{d}{\rm km} + 20 \cdot {\rm lg }\hspace{0.1cm}\frac{f_{\rm T}}{\rm MHz}= 34 + 20 \cdot {\rm lg }\hspace{0.1cm}(10) + 20 \cdot {\rm lg }\hspace{0.1cm}(20)\approx 80\hspace{0.1cm}{\rm dB} \hspace{0.05cm}.$$
  • This corresponds to a power reduction by a factor of  $10^{8}$:
$$P_{\rm E}= 10^{-8} \cdot P_{\rm S}= 10^{-8} \cdot 100\,{\rm kW}\hspace{0.15cm}\underline {= 1\, {\rm mW} \hspace{0.05cm}}.$$


(2)  From  $P_{\rm S} = 10^5 \ \rm W$,  $P_{\rm E} = 10{^–4}\ \rm W$  follows a free space attenuation of  $90 \ \rm dB$.  From this,  we further obtain:

$$20 \cdot {\rm lg }\hspace{0.1cm}\frac{d}{\rm km} = ( 90-34 - 26)\hspace{0.1cm}{\rm dB}= 30\,{\rm dB}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} d = 10^{1.5}\,{\rm km}\hspace{0.15cm}\underline { = 31.6\,{\rm km}\hspace{0.05cm}}.$$


(3)  For DSB–AM without carrier,  that is,  for a modulation depth  $m → ∞$,  the following would hold:

$$ \rho_{v } = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{{N_0} \cdot B_{\rm NF}} = \frac{ P_{\rm E}}{{N_0} \cdot B_{\rm NF}}= \frac{10^{-4}\,{\rm W}}{10^{-14}\,{\rm W/Hz}\cdot 8 \cdot 10^{3}\,{\rm Hz} } = 1.25 \cdot 10^6\hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg }\hspace{0.1cm}\rho_{v } \approx 61\,{\rm dB}\hspace{0.05cm}.$$
  • With modulation depth  $m = 0.5$  the sink SNR becomes smaller by a factor of  $[1 +{2}/{m^2}]^{-1} = {1}/{9}$ .  Thus,  the signal-to-noise ratio at the sink is also smaller:
$$ 10 \cdot {\rm lg }\hspace{0.1cm}\rho_{v } = 61\,{\rm dB}- 10 \cdot {\rm lg }\hspace{0.1cm}(9) \hspace{0.15cm}\underline {\approx 51.5\,{\rm dB}\hspace{0.05cm}}.$$


(4)  According to the calculations in subtask  (3),  the following condition must be satisfied:

$$ 10 \cdot {\rm lg }\hspace{0.1cm}\left({1 + {2}/{m^2}}\right) < 1\,{\rm dB}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} 1 +{2}/{m^2} < 10^{0.1}=1.259 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{2}/{m^2} < 0.259 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} m > \sqrt{8}\approx 2.83 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} m_{\rm min} \hspace{0.15cm}\underline {= 2.83} \hspace{0.05cm}.$$


(5)  Answers 1 and 3  are correct:

  • When using a synchronous demodulator, the addition of the carrier makes no sense unless the former is useful for the required carrier recovery.
  • Since the carrier cannot be used for demodulation,  only a fraction of the transmit power is available for demodulation   $($one third for   $m = 1$,  one ninth for  $m = 0.5)$.