Difference between revisions of "Aufgaben:Exercise 2.3: Algebraic Sum of Binary Numbers"

From LNTwww
Line 67: Line 67:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  In jeder Zelle kann eine  $0$  oder eine  $1$  stehen.  Deshalb kann die Summe alle ganzzahligen Werte zwischen  $0$  und  $6$  annehmen:
+
'''(1)'''  Each cell can contain a  $0$  or a  $1$ .  Therefore, the sum can take all integer values between  $0$  ánd  $6$ :
 
:$$y_{\nu}\in\{0,1,\ \text{...} \ ,6\}\hspace{0.3cm}\Rightarrow\hspace{0.3cm}
 
:$$y_{\nu}\in\{0,1,\ \text{...} \ ,6\}\hspace{0.3cm}\Rightarrow\hspace{0.3cm}
 
y_{\rm max} \hspace{0.15cm} \underline{= 6}.$$
 
y_{\rm max} \hspace{0.15cm} \underline{= 6}.$$
Line 73: Line 73:
  
  
'''(2)'''  Es liegt eine Binomialverteilung vor.  Daher gilt mit  $p = 0.25$:
+
'''(2)'''  There is a binomial distribution.  Therefore, with  $p = 0.25$:
 
:$${\rm Pr}(y =0)=(1-p)^{\it I}=0.75^6=0.178,$$
 
:$${\rm Pr}(y =0)=(1-p)^{\it I}=0.75^6=0.178,$$
 
:$${\rm Pr}(y=1)=\left({ I \atop {1}}\right)\cdot (1-p)^{I-1}\cdot p= \rm 6\cdot 0.75^5\cdot 0.25=0.356,$$
 
:$${\rm Pr}(y=1)=\left({ I \atop {1}}\right)\cdot (1-p)^{I-1}\cdot p= \rm 6\cdot 0.75^5\cdot 0.25=0.356,$$
Line 81: Line 81:
  
  
'''(3)'''  Nach der allgemeinen Gleichung gilt  für den Mittelwert der Binomialverteilung:
+
'''(3)'''  According to the general equation, the mean of the binomial distribution is:
 
:$$m_y= I\cdot p\hspace{0.15cm} \underline{=\rm 1.5}.$$
 
:$$m_y= I\cdot p\hspace{0.15cm} \underline{=\rm 1.5}.$$
  
  
  
'''(4)'''  Entsprechend gilt für die Streuung der Binomialverteilung:
+
'''(4)'''  Accordingly, for the dispersion of the binomial distribution:
 
:$$\sigma_y=\sqrt{ I \cdot p \cdot( 1- p)} \hspace{0.15cm} \underline{= \rm 1.061}.$$
 
:$$\sigma_y=\sqrt{ I \cdot p \cdot( 1- p)} \hspace{0.15cm} \underline{= \rm 1.061}.$$
  
  
  
'''(5)'''&nbsp; Richtig ist der  <u>Lösungsvorschlag 2</u>:
+
'''(5)'''&nbsp; Correct is the <u>proposed solution 2</u>:
*Ist&nbsp; $y_\nu = 0$, so k&ouml;nnen zum n&auml;chsten Zeitpunkt nur die Werte&nbsp; $0$&nbsp; und&nbsp; $1$&nbsp; folgen, nicht aber&nbsp; $2$, ... , $6$.  
+
*If &nbsp; $y_\nu = 0$, then only the values&nbsp; $0$&nbsp; and&nbsp; $1$&nbsp; can follow at the next time point, but not&nbsp; $2$, ... , $6$.  
*Das hei&szlig;t: &nbsp; Die Folge&nbsp; $ \langle y_\nu \rangle$&nbsp; weist (starke) statistische Bindungen auf.  
+
*That is: &nbsp; The sequence&nbsp; $ \langle y_\nu \rangle$&nbsp; has (strong) statistical bindings.  
  
  
  
'''(6)'''&nbsp; Die gesuchte Wahrscheinlichkeit ist identisch mit der Wahrscheinlichkeit daf&uuml;r, dass das neue Bin&auml;rsymbol gleich dem aus dem Schieberegister herausgefallenen Symbol ist. Daraus folgt:
+
'''(6)'''&nbsp; The probability we are looking for is identical to the probability that the new binary symbol is equal to the symbol dropped out of the shift register. It follows that:
 
:$${\rm Pr} (y_{\nu} = \mu\hspace{0.05cm}| \hspace{0.05cm} y_{\nu-{1}} = \mu) = {\rm Pr}(x_{\nu}= x_{\nu-6}). $$
 
:$${\rm Pr} (y_{\nu} = \mu\hspace{0.05cm}| \hspace{0.05cm} y_{\nu-{1}} = \mu) = {\rm Pr}(x_{\nu}= x_{\nu-6}). $$
  
*Da die Symbole&nbsp; $x_\nu$&nbsp; statistisch voneinander unabh&auml;ngig sind, kann hierf&uuml;r auch geschrieben werden:
+
*Since the symbols&nbsp; $x_\nu$&nbsp; are statistically independent of each other, we can also write for this:
 
:$${\rm Pr}(x_{\nu} = x_{\nu-6}) = {\rm Pr}\big[(x_{\nu}= 1)\hspace{0.05cm}\cap\hspace{0.05cm}(x_{\nu-6}= 1)\hspace{0.05cm}\cup \hspace{0.05cm}(x_\nu=0)\hspace{0.05cm}\cap\hspace{0.05cm}(x_{\nu-6} =0)\big]= p^{2}+(1- p)^{2}=\rm 0.25^2 + 0.75^2\hspace{0.15cm} \underline{ = 0.625}. $$
 
:$${\rm Pr}(x_{\nu} = x_{\nu-6}) = {\rm Pr}\big[(x_{\nu}= 1)\hspace{0.05cm}\cap\hspace{0.05cm}(x_{\nu-6}= 1)\hspace{0.05cm}\cup \hspace{0.05cm}(x_\nu=0)\hspace{0.05cm}\cap\hspace{0.05cm}(x_{\nu-6} =0)\big]= p^{2}+(1- p)^{2}=\rm 0.25^2 + 0.75^2\hspace{0.15cm} \underline{ = 0.625}. $$
  

Revision as of 13:06, 10 December 2021

Considered random generator

A random number generator outputs a binary random number   $x_\nu$  at each clock time  $(\nu)$ , which can be  $0$  or  $1$ .

  • The value "1" occurs with probability  $p = 0.25$ .
  • The individual values  $x_\nu$  are statistically independent of each other.


The binary numbers are stored in a shift register withnbsp; $I = 6$  memory cells.

At each clock instant, the contents of this shift register are shifted one place to the right and the algebraic sum  $y_\nu$  of the shift register contents is formed in each case:

$$y_{\nu}=\sum\limits_{i=0}^{5}x_{\nu-i}=x_{\nu}+x_{\nu-1}+\ \text{...} \ +x_{\nu-5}.$$




Hints:



Questions

1

What values can the sum  $y$  take?  What is the largest possible value?

$y_\max \ = \ $

2

Calculate the probability that  $y$  is greater than  $2$ .

${\rm Pr}(y > 2) \ = \ $

3

What is the mean value of the random variable  $y$ ?

$m_y \ =$

4

Find the ***standard deviation*** of the random variable  $y$.

$\sigma_y \ = \ $

5

Are the random numbers  $y_\nu$  statistically independent?  Justify your result.

The random numbers are statistically independent.
The random numbers are statistically dependent.

6

What is the conditional probability that  $y_\nu$  equals  $\mu$  again if  $y_{\nu-1} = \mu$  occured previously?  $(\mu = 0, \ 1, \ \text{...} \ , \ I)$.

${\rm Pr}(y_\nu = \mu \hspace{0.05cm} | \hspace{0.05cm} y_{\nu-1} = \mu ) \ = \ $


Solution

(1)  Each cell can contain a  $0$  or a  $1$ .  Therefore, the sum can take all integer values between  $0$  ánd  $6$ :

$$y_{\nu}\in\{0,1,\ \text{...} \ ,6\}\hspace{0.3cm}\Rightarrow\hspace{0.3cm} y_{\rm max} \hspace{0.15cm} \underline{= 6}.$$


(2)  There is a binomial distribution.  Therefore, with  $p = 0.25$:

$${\rm Pr}(y =0)=(1-p)^{\it I}=0.75^6=0.178,$$
$${\rm Pr}(y=1)=\left({ I \atop {1}}\right)\cdot (1-p)^{I-1}\cdot p= \rm 6\cdot 0.75^5\cdot 0.25=0.356,$$
$${\rm Pr}(y=2)=\left({ I \atop { 2}}\right)\cdot (1-p)^{I-2}\cdot p^{\rm 2}= \rm 15\cdot 0.75^4\cdot 0.25^2=0.297,$$
$$\Rightarrow \hspace{0.3cm}{\rm Pr}(y>2)=1-{\rm Pr}(y=0)-{\rm Pr}( y=1)-{\rm Pr}( y=2)\hspace{0.15cm} \underline{=\rm 0.169}.$$


(3)  According to the general equation, the mean of the binomial distribution is:

$$m_y= I\cdot p\hspace{0.15cm} \underline{=\rm 1.5}.$$


(4)  Accordingly, for the dispersion of the binomial distribution:

$$\sigma_y=\sqrt{ I \cdot p \cdot( 1- p)} \hspace{0.15cm} \underline{= \rm 1.061}.$$


(5)  Correct is the proposed solution 2:

  • If   $y_\nu = 0$, then only the values  $0$  and  $1$  can follow at the next time point, but not  $2$, ... , $6$.
  • That is:   The sequence  $ \langle y_\nu \rangle$  has (strong) statistical bindings.


(6)  The probability we are looking for is identical to the probability that the new binary symbol is equal to the symbol dropped out of the shift register. It follows that:

$${\rm Pr} (y_{\nu} = \mu\hspace{0.05cm}| \hspace{0.05cm} y_{\nu-{1}} = \mu) = {\rm Pr}(x_{\nu}= x_{\nu-6}). $$
  • Since the symbols  $x_\nu$  are statistically independent of each other, we can also write for this:
$${\rm Pr}(x_{\nu} = x_{\nu-6}) = {\rm Pr}\big[(x_{\nu}= 1)\hspace{0.05cm}\cap\hspace{0.05cm}(x_{\nu-6}= 1)\hspace{0.05cm}\cup \hspace{0.05cm}(x_\nu=0)\hspace{0.05cm}\cap\hspace{0.05cm}(x_{\nu-6} =0)\big]= p^{2}+(1- p)^{2}=\rm 0.25^2 + 0.75^2\hspace{0.15cm} \underline{ = 0.625}. $$