Difference between revisions of "Aufgaben:Exercise 5.3: PACF of PN Sequences"

From LNTwww
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Spreizfolgen für CDMA
+
{{quiz-Header|Buchseite=Modulation_Methods/Spreading_Sequences_for_CDMA
 
}}
 
}}
  
 
[[File:P_ID1884__Mod_A_5_3.png|right|frame|M–sequence $(P = 15)$  plus cyclic permutations]]
 
[[File:P_ID1884__Mod_A_5_3.png|right|frame|M–sequence $(P = 15)$  plus cyclic permutations]]
With a feedback shift register of degree  $G$  a spreading sequence  $〈c_ν〉$  with the (maximum) period length  $P = 2^G - 1$  can be generated if the feedback coefficients (taps) are chosen correctly.
+
With a feedback shift register of degree  $G$  a spreading sequence  $〈c_ν〉$  with the  (maximum)  period length  $P = 2^G - 1$  can be generated if the feedback coefficients  (taps)  are chosen correctly.
  
In this exercise, we consider the PN generator with octal identifier  $(31)$  shown in the left graph of [[Modulation_Methods/Spreizfolgen_für_CDMA#Pseudo.E2.80.93Noise.E2.80.93Folgen_maximaler_L.C3.A4nge|$\text{example 1}$]]  in the theory section, which yields a sequence with period length  $P = 15$  because of  $G = 4$. 
+
In this exercise,  we consider the PN generator with octal identifier  $(31)$  shown in the left graph of [[Modulation_Methods/Spreading_Sequences_for_CDMA#Pseudo-noise_sequences_of_maximum_length|$\text{Example 1}$]]  in the theory section,  which yields a sequence with period length  $P = 15$  because of  $G = 4$. 
  
The graph for this exercise shows the unipolar sequence  $〈u_ν〉$  with  $u_ν ∈ \{0, 1\}$  and cyclic shifts  $〈u_{ν+λ}〉$  derived from it, where the shift parameter  $λ$  takes values between  $1$  and  $15$.   Here, a shift by  $λ$  means absolutely an offset by  $λ · T_c$.  Here,  $T_c$  denotes the chip duration.
+
The graph for this exercise shows the unipolar sequence  $〈u_ν〉$  with  $u_ν ∈ \{0, 1\}$  and cyclic shifts  $〈u_{ν+λ}〉$  derived from it,  where the shift parameter  $λ$  takes values between  $1$  and  $15$.   Here,  a shift by  $λ$  means absolutely an offset by  $λ · T_c$.  Here,   $T_c$  denotes the chip duration.
  
For use in a CDMA system, however, one uses the bipolar (antipodal) sequence  $〈c_ν〉$  with  $c_ν ∈ \{+1, -1\}$, which is to be investigated starting in subtask  '''(5)'''.   We are looking for its periodic auto-correlation function (PACF)
+
For use in a CDMA system,  however,  one uses the bipolar (antipodal) sequence  $〈c_ν〉$  with  $c_ν ∈ \{+1, -1\}$,  which is to be investigated starting in subtask  '''(5)'''.   We are looking for its periodic auto-correlation function  $\rm (PACF)$
 
:$${\it \varphi}_{c}(\lambda) = {\rm E} \big [ c_\nu \cdot c_{\nu+\lambda} \big ] \hspace{0.05cm}.$$
 
:$${\it \varphi}_{c}(\lambda) = {\rm E} \big [ c_\nu \cdot c_{\nu+\lambda} \big ] \hspace{0.05cm}.$$
In order to derive it, first the PACF
+
In order to derive it,  first the PACF
 
:$${\it \varphi}_{u}(\lambda) = {\rm E}\big [ u_\nu \cdot u_{\nu+\lambda} \big ]$$
 
:$${\it \varphi}_{u}(\lambda) = {\rm E}\big [ u_\nu \cdot u_{\nu+\lambda} \big ]$$
 
with the unipolar coefficients  $u_ν ∈ \{0, 1\}$,  will be calculated.  The conversion of the coefficients is given by  $c_ν = 1 - 2u_ν$.   
 
with the unipolar coefficients  $u_ν ∈ \{0, 1\}$,  will be calculated.  The conversion of the coefficients is given by  $c_ν = 1 - 2u_ν$.   
Line 18: Line 18:
  
  
 
+
Note:  
 
 
 
 
''Note:''
 
 
*The exercise belongs to the chapter  [[Modulation_Methods/Spreizfolgen_für_CDMA|Spreading Sequences for CDMA]].
 
*The exercise belongs to the chapter  [[Modulation_Methods/Spreizfolgen_für_CDMA|Spreading Sequences for CDMA]].
 
   
 
   
Line 43: Line 40:
 
{Which statements are true for the expected value  ${\rm E}\big[u_ν · u_{ν+λ}\big]$?
 
{Which statements are true for the expected value  ${\rm E}\big[u_ν · u_{ν+λ}\big]$?
 
|type="[]"}
 
|type="[]"}
+  ${\rm E}\big[u_ν · u_{ν+1}\big] = 4/15$ is valid.
+
+  ${\rm E}\big[u_ν · u_{ν+1}\big] = 4/15$  is valid.
+  ${\rm E}\big[u_ν · u_{ν+2}\big] = 4/15$ is valid.
+
+  ${\rm E}\big[u_ν · u_{ν+2}\big] = 4/15$  is valid.
-  ${\rm E}\big[u_ν · u_{ν+15}\big] = 4/15$ is valid.
+
-  ${\rm E}\big[u_ν · u_{ν+15}\big] = 4/15$  is valid.
 
+ The PACF values  $φ_u(λ = 1)$, ... , $φ_u(λ = 14)$  are all equal.
 
+ The PACF values  $φ_u(λ = 1)$, ... , $φ_u(λ = 14)$  are all equal.
  
Line 67: Line 64:
  
  
 
+
'''(2)'''  Of the  $P = 15$  spreading bits,  $8$  are ones and  $7$  are zeros.  Thus,  because  $u_ν^{\hspace{0.04cm}2} = u_ν$:
'''(2)'''  Of the  $P = 15$  spreading bits,  $8$  are ones and  $7$  are zeros.  Thus, because  $u_ν^{\hspace{0.04cm}2} = u_ν$:
+
:$${\rm E}\big [ u_\nu \big ] = {\rm E}\big [ u_\nu^2 \big ] = {8}/{15} \hspace{0.15cm}\underline {\approx 0.533} \hspace{0.05cm}, \hspace{0.3cm} \text{general:}\,\, (P+1)/(2P)\hspace{0.05cm}.$$
:$${\rm E}\big [ u_\nu \big ] = {\rm E}\big [ u_\nu^2 \big ] = {8}/{15} \hspace{0.15cm}\underline {\approx 0.533} \hspace{0.05cm}, \hspace{0.3cm} \text{allgemein:}\,\, (P+1)/(2P)\hspace{0.05cm}.$$
 
  
  
 
+
'''(3)'''  In bipolar representation,  it is always  $c_ν^{\hspace{0.04cm}2} = 1$.  Thus, also for the quadratic expectation value:
'''(3)'''  In bipolar representation, it is always  $c_ν^{\hspace{0.04cm}2} = 1$.  Thus, also for the quadratic expectation value:
 
 
:$${\rm E}\big [ c_\nu^{\hspace{0.04cm}2} \big ] \hspace{0.15cm}\underline {= 1}\hspace{0.05cm}.$$
 
:$${\rm E}\big [ c_\nu^{\hspace{0.04cm}2} \big ] \hspace{0.15cm}\underline {= 1}\hspace{0.05cm}.$$
  
  
 
+
'''(4)'''&nbsp; <u>Solutions 1, 2 and 4</u>&nbsp; are correct:
'''(4)'''&nbsp; <u>Solutions 1, 2 and 4</u> are correct:
 
 
*The attached table makes clear that for the discrete PACF values with&nbsp; $λ = 1$, ... , $14$&nbsp; holds:
 
*The attached table makes clear that for the discrete PACF values with&nbsp; $λ = 1$, ... , $14$&nbsp; holds:
 
:$${\it \varphi}_{u}(\lambda) = {\rm E}\big [ u_\nu \cdot u_{\nu+\lambda} \big ]= {4}/{15} \hspace{0.05cm}.$$
 
:$${\it \varphi}_{u}(\lambda) = {\rm E}\big [ u_\nu \cdot u_{\nu+\lambda} \big ]= {4}/{15} \hspace{0.05cm}.$$
*If we multiply&nbsp; 〈$u_ν$&nbsp;〉 with&nbsp; 〈$u_{ν+λ}$, where for the index &nbsp;$λ$&nbsp; again the values&nbsp; $1$, ... , $14$&nbsp; are to be used, then four ones occur in the product in each case.
+
*If we multiply&nbsp; 〈$u_ν$〉 with 〈$u_{ν+λ}$,&nbsp; where for the index &nbsp;$λ$&nbsp; the values&nbsp; $1$, ... , $14$&nbsp; are to be used again,&nbsp; then four ones occur in the product in each case.
*In contrast, for&nbsp; $λ = P = 15$:
+
*In contrast,&nbsp; for&nbsp; $λ = P = 15$:
 
:$${\it \varphi}_{u}(\lambda = 15) = {\rm E}\big [ u_\nu \cdot u_{\nu+P} \big ]= {8}/{15} \hspace{0.05cm}.$$
 
:$${\it \varphi}_{u}(\lambda = 15) = {\rm E}\big [ u_\nu \cdot u_{\nu+P} \big ]= {8}/{15} \hspace{0.05cm}.$$
  
Line 88: Line 82:
 
'''(5)'''&nbsp; The bipolar coefficients &nbsp;$c_ν$&nbsp; result from the unipolar coefficients &nbsp;$u_ν$&nbsp; according to the equation
 
'''(5)'''&nbsp; The bipolar coefficients &nbsp;$c_ν$&nbsp; result from the unipolar coefficients &nbsp;$u_ν$&nbsp; according to the equation
 
:$$c_\nu = 1 - 2 \cdot u_\nu \hspace{0.3cm} \Rightarrow \hspace{0.3cm} u_\nu = 0\text{:} \ \ c_\nu = +1\hspace{0.05cm},\hspace{0.3cm}u_\nu = 1\text{:} \ \ c_\nu = -1 \hspace{0.05cm}.$$
 
:$$c_\nu = 1 - 2 \cdot u_\nu \hspace{0.3cm} \Rightarrow \hspace{0.3cm} u_\nu = 0\text{:} \ \ c_\nu = +1\hspace{0.05cm},\hspace{0.3cm}u_\nu = 1\text{:} \ \ c_\nu = -1 \hspace{0.05cm}.$$
*Thus, it follows from the calculation rules for expected values:
+
*Thus,&nbsp; it follows from the calculation rules for expected values:
 
:$${\it \varphi}_{c}(\lambda)  =  {\rm E} \big [ c_\nu \cdot c_{\nu+\lambda} \big ]= {\rm E} \big [ (1 - 2 \cdot u_\nu ) \cdot (1 - 2 \cdot u_{\nu+\lambda} ) \big ] =  1 + 4 \cdot {\rm E}\big [ u_\nu \cdot u_{\nu+\lambda} \big ] - 2 \cdot {\rm E}\big [ u_\nu \big ] - 2 \cdot {\rm E}\big [ u_{\nu+\lambda} \big ] \hspace{0.05cm}.$$
 
:$${\it \varphi}_{c}(\lambda)  =  {\rm E} \big [ c_\nu \cdot c_{\nu+\lambda} \big ]= {\rm E} \big [ (1 - 2 \cdot u_\nu ) \cdot (1 - 2 \cdot u_{\nu+\lambda} ) \big ] =  1 + 4 \cdot {\rm E}\big [ u_\nu \cdot u_{\nu+\lambda} \big ] - 2 \cdot {\rm E}\big [ u_\nu \big ] - 2 \cdot {\rm E}\big [ u_{\nu+\lambda} \big ] \hspace{0.05cm}.$$
 
*Using the result of subtask&nbsp; '''(2)'''
 
*Using the result of subtask&nbsp; '''(2)'''
 
:$$ {\rm E}\left [ u_{\nu} \right ]= {\rm E}\left [ u_{\nu+\lambda} \right ]={8}/{15} \hspace{0.05cm},$$
 
:$$ {\rm E}\left [ u_{\nu} \right ]= {\rm E}\left [ u_{\nu+\lambda} \right ]={8}/{15} \hspace{0.05cm},$$
and the subtask&nbsp; '''(4)'''
+
:and the subtask&nbsp; '''(4)'''
 
:$${\rm E}\big [ u_\nu \cdot u_{\nu+\lambda} \big ] ={4}/{15} \hspace{0.05cm} \,\,{\rm{f\ddot{u}r}}\,\,\lambda = 0, \pm P, \pm 2P, \text{...}$$
 
:$${\rm E}\big [ u_\nu \cdot u_{\nu+\lambda} \big ] ={4}/{15} \hspace{0.05cm} \,\,{\rm{f\ddot{u}r}}\,\,\lambda = 0, \pm P, \pm 2P, \text{...}$$
one thus arrives at the result&nbsp; $($if&nbsp; $λ$&nbsp; is not a multiple of&nbsp; $P)$:
+
:one thus arrives at the result&nbsp; $($if&nbsp; $λ$&nbsp; is not a multiple of&nbsp; $P)$:
 
:$${\it \varphi}_{c}(\lambda) = 1 + 4 \cdot \frac{4}{15} - 2 \cdot \frac{8}{15}- 2 \cdot \frac{8}{15}  = - \frac{1}{15} = - \frac{1}{P}\hspace{0.15cm}\underline {\approx - 0.067} \hspace{0.05cm}.$$
 
:$${\it \varphi}_{c}(\lambda) = 1 + 4 \cdot \frac{4}{15} - 2 \cdot \frac{8}{15}- 2 \cdot \frac{8}{15}  = - \frac{1}{15} = - \frac{1}{P}\hspace{0.15cm}\underline {\approx - 0.067} \hspace{0.05cm}.$$
  

Latest revision as of 14:21, 13 December 2021

M–sequence $(P = 15)$  plus cyclic permutations

With a feedback shift register of degree  $G$  a spreading sequence  $〈c_ν〉$  with the  (maximum)  period length  $P = 2^G - 1$  can be generated if the feedback coefficients  (taps)  are chosen correctly.

In this exercise,  we consider the PN generator with octal identifier  $(31)$  shown in the left graph of $\text{Example 1}$  in the theory section,  which yields a sequence with period length  $P = 15$  because of  $G = 4$. 

The graph for this exercise shows the unipolar sequence  $〈u_ν〉$  with  $u_ν ∈ \{0, 1\}$  and cyclic shifts  $〈u_{ν+λ}〉$  derived from it,  where the shift parameter  $λ$  takes values between  $1$  and  $15$.   Here,  a shift by  $λ$  means absolutely an offset by  $λ · T_c$.  Here,   $T_c$  denotes the chip duration.

For use in a CDMA system,  however,  one uses the bipolar (antipodal) sequence  $〈c_ν〉$  with  $c_ν ∈ \{+1, -1\}$,  which is to be investigated starting in subtask  (5).   We are looking for its periodic auto-correlation function  $\rm (PACF)$

$${\it \varphi}_{c}(\lambda) = {\rm E} \big [ c_\nu \cdot c_{\nu+\lambda} \big ] \hspace{0.05cm}.$$

In order to derive it,  first the PACF

$${\it \varphi}_{u}(\lambda) = {\rm E}\big [ u_\nu \cdot u_{\nu+\lambda} \big ]$$

with the unipolar coefficients  $u_ν ∈ \{0, 1\}$,  will be calculated.  The conversion of the coefficients is given by  $c_ν = 1 - 2u_ν$. 


Note:


Questions

1

What is the degree of the PN generator?

$G \ = \ $

2

What is the expected squared value of the coefficients  $u_ν ∈ \{0,\ 1\}$?

${\rm E}\big[u_ν^{\hspace{0.04cm}2}\big] \ = \ $

3

What is the expected squared value of the coefficients  $c_ν ∈ \{+1, –1\}$?

${\rm E}\big[c_ν^{\hspace{0.04cm}2}\big] \ = \ $

4

Which statements are true for the expected value  ${\rm E}\big[u_ν · u_{ν+λ}\big]$?

 ${\rm E}\big[u_ν · u_{ν+1}\big] = 4/15$  is valid.
 ${\rm E}\big[u_ν · u_{ν+2}\big] = 4/15$  is valid.
 ${\rm E}\big[u_ν · u_{ν+15}\big] = 4/15$  is valid.
The PACF values  $φ_u(λ = 1)$, ... , $φ_u(λ = 14)$  are all equal.

5

Calculate the PACF values with bipolar representation  $(λ = 1, \text{...} \ , 14)$:

$φ_c(λ) \ = \ $

6

Specify the following PACF values for the case  $G = 6$. 

$φ_c(λ=0)\hspace{0.33cm} = \ $

$φ_c(λ=1)\hspace{0.33cm} = \ $

$φ_c(λ=63)\ = \ $

$φ_c(λ=64)\ = \ $


Solution

(1)  The period of an M-sequence is  $P = 2^G -1 \hspace{0.05cm}.$  This results with  $P = 15$  the degree  $\underline{G = 4}$.


(2)  Of the  $P = 15$  spreading bits,  $8$  are ones and  $7$  are zeros.  Thus,  because  $u_ν^{\hspace{0.04cm}2} = u_ν$:

$${\rm E}\big [ u_\nu \big ] = {\rm E}\big [ u_\nu^2 \big ] = {8}/{15} \hspace{0.15cm}\underline {\approx 0.533} \hspace{0.05cm}, \hspace{0.3cm} \text{general:}\,\, (P+1)/(2P)\hspace{0.05cm}.$$


(3)  In bipolar representation,  it is always  $c_ν^{\hspace{0.04cm}2} = 1$.  Thus, also for the quadratic expectation value:

$${\rm E}\big [ c_\nu^{\hspace{0.04cm}2} \big ] \hspace{0.15cm}\underline {= 1}\hspace{0.05cm}.$$


(4)  Solutions 1, 2 and 4  are correct:

  • The attached table makes clear that for the discrete PACF values with  $λ = 1$, ... , $14$  holds:
$${\it \varphi}_{u}(\lambda) = {\rm E}\big [ u_\nu \cdot u_{\nu+\lambda} \big ]= {4}/{15} \hspace{0.05cm}.$$
  • If we multiply  〈$u_ν$〉 with 〈$u_{ν+λ}〉$,  where for the index  $λ$  the values  $1$, ... , $14$  are to be used again,  then four ones occur in the product in each case.
  • In contrast,  for  $λ = P = 15$:
$${\it \varphi}_{u}(\lambda = 15) = {\rm E}\big [ u_\nu \cdot u_{\nu+P} \big ]= {8}/{15} \hspace{0.05cm}.$$


(5)  The bipolar coefficients  $c_ν$  result from the unipolar coefficients  $u_ν$  according to the equation

$$c_\nu = 1 - 2 \cdot u_\nu \hspace{0.3cm} \Rightarrow \hspace{0.3cm} u_\nu = 0\text{:} \ \ c_\nu = +1\hspace{0.05cm},\hspace{0.3cm}u_\nu = 1\text{:} \ \ c_\nu = -1 \hspace{0.05cm}.$$
  • Thus,  it follows from the calculation rules for expected values:
$${\it \varphi}_{c}(\lambda) = {\rm E} \big [ c_\nu \cdot c_{\nu+\lambda} \big ]= {\rm E} \big [ (1 - 2 \cdot u_\nu ) \cdot (1 - 2 \cdot u_{\nu+\lambda} ) \big ] = 1 + 4 \cdot {\rm E}\big [ u_\nu \cdot u_{\nu+\lambda} \big ] - 2 \cdot {\rm E}\big [ u_\nu \big ] - 2 \cdot {\rm E}\big [ u_{\nu+\lambda} \big ] \hspace{0.05cm}.$$
  • Using the result of subtask  (2)
$$ {\rm E}\left [ u_{\nu} \right ]= {\rm E}\left [ u_{\nu+\lambda} \right ]={8}/{15} \hspace{0.05cm},$$
and the subtask  (4)
$${\rm E}\big [ u_\nu \cdot u_{\nu+\lambda} \big ] ={4}/{15} \hspace{0.05cm} \,\,{\rm{f\ddot{u}r}}\,\,\lambda = 0, \pm P, \pm 2P, \text{...}$$
one thus arrives at the result  $($if  $λ$  is not a multiple of  $P)$:
$${\it \varphi}_{c}(\lambda) = 1 + 4 \cdot \frac{4}{15} - 2 \cdot \frac{8}{15}- 2 \cdot \frac{8}{15} = - \frac{1}{15} = - \frac{1}{P}\hspace{0.15cm}\underline {\approx - 0.067} \hspace{0.05cm}.$$


PACF of a PN sequence of maximum length

(6)  A M-sequence with degree  $G = 6$  has the period length $P = 63$.

  • Corresponding to the result for subtask  (5),  we thus obtain:
$$ {\it \varphi}_{c}(\lambda = 0) \hspace{0.15cm}\underline {= +1} \hspace{0.05cm},$$
$$ {\it \varphi}_{c}(\lambda = 1)= - 1/63 \hspace{0.15cm}\underline {\approx - 0.016} \hspace{0.05cm},$$
$$ {\it \varphi}_{c}(\lambda = 63) = {\it \varphi}_{c}(\lambda = 0) \hspace{0.15cm}\underline {= +1} \hspace{0.05cm},$$
$$ {\it \varphi}_{c}(\lambda = 64) = {\it \varphi}_{c}(\lambda = 1)= - 1/63 \hspace{0.15cm}\underline {\approx - 0.016} \hspace{0.05cm}.$$