Difference between revisions of "Aufgaben:Exercise 4.1: Low-Pass and Band-Pass Signals"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=*Buch*/*Kapitel* }} 250px|right|* ===Fragebogen=== <quiz display=simple> {Multiple-Choice Frage |type="[]"} - Falsch +…“)
 
Line 3: Line 3:
 
}}
 
}}
  
[[File:*|250px|right|*]]
+
[[File:P_ID691__Sig_A_4_1.png|250px|right|TP- und BP-Signale (Aufgabe A4.1)]]
  
 +
Rechts sind drei Signalverläufe skizziert, wobei die beiden ersten Signale folgenden Verlauf aufweisen:
 +
 +
$$x(t)  =  10\hspace{0.05cm}{\rm V} \cdot {\rm si} ( \pi \cdot
 +
{t}/{T_x}) ,$$
 +
 +
$$y(t)  =  6\hspace{0.05cm}{\rm V} \cdot {\rm si}( \pi \cdot
 +
{t}/{T_y}) .$$
 +
 +
Die Parameter Tx = 100 μs und Ty = 166.67 μs geben jeweils die erste Nullstelle von x(t) bzw. y(t) an.
 +
Das Signal d(t) ergibt sich aus der Differenz der beiden oberen Signale (untere Grafik):
 +
 +
$$d(t)  =  x(t)-y(t)  .$$
 +
 +
In der Teilaufgabe d) ist nach den Integralflächen der impulsartigen Signale x(t) und d(t) gefragt. Für diese gilt:
 +
 +
$$F_x = \int_{- \infty}^{+\infty}\hspace{-0.4cm}x(t)\hspace{0.1cm}{\rm d}t , \hspace{0.5cm}F_d = \int_{- \infty}^{+\infty}\hspace{-0.4cm}d(t)\hspace{0.1cm}{\rm d}t .$$
 +
 +
Dagegen gilt für die entsprechenden Signalenergien mit dem Satz von Parseval:
 +
 +
$$E_x = \int_{- \infty}^{+\infty}\hspace{-0.4cm}|x(t)|^2\hspace{0.1cm}{\rm
 +
d}t = \int_{- \infty}^{+\infty}\hspace{-0.4cm}|X(f)|^2\hspace{0.1cm}{\rm
 +
d}f ,$$
 +
 +
$$E_d = \int_{- \infty}^{+\infty}\hspace{-0.4cm}|d(t)|^2\hspace{0.1cm}{\rm
 +
d}t = \int_{- \infty}^{+\infty}\hspace{-0.4cm}|D(f)|^2\hspace{0.1cm}{\rm
 +
d}f .$$
 +
 +
Hinweis: Diese Aufgabe bezieht sich auf den Theorieteil von Kapitel 4.1. Berücksichtigen Sie weiterhin, dass die Fourierrücktransformierte eines rechteckförmigen Spektrums
 +
 +
$$X(f)=\left\{ {X_0 \; \rm f\ddot{u}r\; |\it f| < \rm B, \atop {\rm 0 \;\;\; \rm sonst}}\right.$$
 +
 +
wie folgt lautet:
 +
 +
$$x(t)  =  2 \cdot X_0 \cdot B \cdot {\rm si} ( 2\pi B t) .$$
  
 
===Fragebogen===
 
===Fragebogen===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{Wie lautet das Spektrum X(f) des Signals x(t)? Wie groß sind X(f = 0) und die physikalische, einseitige Bandbreite von x(t)?
|type="[]"}
+
|type="{}"}
- Falsch
+
$X(f=0) = $ { 1 } mV/Hz
+ Richtig
+
$B_x =$ { 5000 } Hz
 +
 
 +
{Wie lauten die entsprechenden Kenngrößen des Signals y(t)?
 +
|type="{}"}
 +
$Y(f=0) = $ { 1 } mV/Hz
 +
$B_y =$ { 3000 } Hz
  
 +
{Berechnen Sie das Spektrum D(f) des Differenzsignals d(t) = x(t) – y(t). Wie groß sind D(f = 0) und die physikalische, einseitige Bandbreite Bd?
 +
|type="{}"}
 +
$D(f=0) = $ { 0 } mV/Hz
 +
$B_d =$ { 2000 } Hz
  
{Input-Box Frage
+
{Wie groß sind die Integralflächen Fx und Fd der Signale x(t) und d(t)?
 
|type="{}"}
 
|type="{}"}
<math> \alpha = </math> { 0.3 _5 }
+
$F_x =$ { 0.001 } Vs
 +
$F_d =$ { 0 } Vs 
  
 +
{Wie groß sind die (auf 1 Ω umgerechneten) Energien dieser Signale?
 +
|type="{}"}
 +
$E_x =$ { 0.01 } $\text{V^2s}$
 +
$E_d =$ { 0.004 } $\text{V^2s}$
  
  
Line 25: Line 73:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''  Antwort 1
+
'''1.''' a) Die si–förmige Zeitfunktion x(t) lässt auf ein Rechteckspektrum X(f) schließen. Die absolute, zweiseitige Bandbreite 2 · Bx ist gleich dem Kehrwert der ersten Nullstelle. Daraus folgt:
 +
 +
$$B_x = \frac{1}{2 \cdot T_x}  =  \frac{1}{2 \cdot 0.1
 +
\hspace{0.1cm}{\rm ms}}\hspace{0.15 cm}\underline{ = 5 \hspace{0.1cm}{\rm kHz}}.$$
 +
 
 +
Da der Signalwert bei t = 0 gleich der Rechteckfläche ist, ergibt sich für die konstante Höhe:
 +
 +
$$X(f=0) = \frac{x(t=0)}{2 \cdot B_x}  =  \frac{10
 +
\hspace{0.1cm}{\rm V}}{10 \hspace{0.1cm}{\rm kHz}} \hspace{0.15 cm}\underline{= 10^{-3}
 +
\hspace{0.1cm}{\rm V/Hz}}.$$
 +
 
 +
b)  Aus Ty = 0.167 ms erhält man By = 3 kHz. Zusammen mit y(t = 0) = 6V führt dies zum gleichen Spektralwert Y(f = 0) = 10−3 V/Hz.
 +
 
 +
[[File:P_ID701__Sig_A_4_1_c_neu.png|250px|right|Rechteckförmiges BP-Spektrum (ML zu Aufgabe A4.1)]]
 +
 
 +
c)  Aus d(t) = x(t) – y(t) folgt wegen der Linearität der Fouriertransformation:
 +
 +
$$D(f)  = X(f) - Y(f).$$
 +
 
 +
Die Differenz der zwei gleich hohen Rechteckfunktionen führt zu einem rechteckförmigen BP–Spektrum zwischen 3 kHz und 5 kHz. Die (einseitige) Bandbreite beträgt somit Bd = 2 kHz. In diesem Frequenzintervall ist D(f) = 10–3 V/Hz. Außerhalb, also auch bei f = 0, gilt D(f) = 0.
 +
d)  Nach den fundamentalen Gesetzmäßigkeiten der Fouriertransformation ist das Integral über die Zeitfunktion gleich dem Spektralwert bei f = 0. Daraus folgt:
 +
 +
$$F_x = X(f=0) = \frac{x(t=0)}{2 \cdot B_x}  =  10^{-3}
 +
\hspace{0.1cm}{\rm V/Hz}\hspace{0.15 cm}\underline{=  10^{-3} \hspace{0.1cm}{\rm Vs}},$$
 +
 
 +
$$F_d = D(f=0) \hspace{0.15 cm}\underline{= 0}.$$
 +
 +
Das bedeutet: Bei jedem Bandpass–Signal sind die Flächen der positiven Signalanteile genau so groß wie die Flächen der negativen Anteile.
 +
e)  In beiden Fällen ist die Berechnung im Frequenzbereich einfacher als im Zeitbereich, da hier die Integration auf eine Flächenberechnung von Rechtecken zurückgeführt werden kann:
 +
 +
$$E_x =    (10^{-3} \hspace{0.1cm}{\rm V/Hz})^2 \cdot 2 \cdot 5
 +
\hspace{0.1cm}{\rm kHz} \hspace{0.15 cm}\underline{= 10^{-2} \hspace{0.1cm}{\rm V^2s}},$$
 +
 
 +
$$E_d =    (10^{-3} \hspace{0.1cm}{\rm V/Hz})^2 \cdot 2 \cdot 2
 +
\hspace{0.1cm}{\rm kHz} \hspace{0.15 cm}\underline{= 4 \cdot 10^{-3} \hspace{0.1cm}{\rm
 +
V^2s}}.$$
 +
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
 
[[Category:Aufgaben zu Signaldarstellung|^4. Bandpassartige Signale^]]
 
[[Category:Aufgaben zu Signaldarstellung|^4. Bandpassartige Signale^]]

Revision as of 16:17, 18 April 2016

TP- und BP-Signale (Aufgabe A4.1)

Rechts sind drei Signalverläufe skizziert, wobei die beiden ersten Signale folgenden Verlauf aufweisen:

$$x(t) = 10\hspace{0.05cm}{\rm V} \cdot {\rm si} ( \pi \cdot {t}/{T_x}) ,$$

$$y(t) = 6\hspace{0.05cm}{\rm V} \cdot {\rm si}( \pi \cdot {t}/{T_y}) .$$

Die Parameter Tx = 100 μs und Ty = 166.67 μs geben jeweils die erste Nullstelle von x(t) bzw. y(t) an. Das Signal d(t) ergibt sich aus der Differenz der beiden oberen Signale (untere Grafik):

$$d(t) = x(t)-y(t) .$$

In der Teilaufgabe d) ist nach den Integralflächen der impulsartigen Signale x(t) und d(t) gefragt. Für diese gilt:

$$F_x = \int_{- \infty}^{+\infty}\hspace{-0.4cm}x(t)\hspace{0.1cm}{\rm d}t , \hspace{0.5cm}F_d = \int_{- \infty}^{+\infty}\hspace{-0.4cm}d(t)\hspace{0.1cm}{\rm d}t .$$

Dagegen gilt für die entsprechenden Signalenergien mit dem Satz von Parseval:

$$E_x = \int_{- \infty}^{+\infty}\hspace{-0.4cm}|x(t)|^2\hspace{0.1cm}{\rm d}t = \int_{- \infty}^{+\infty}\hspace{-0.4cm}|X(f)|^2\hspace{0.1cm}{\rm d}f ,$$

$$E_d = \int_{- \infty}^{+\infty}\hspace{-0.4cm}|d(t)|^2\hspace{0.1cm}{\rm d}t = \int_{- \infty}^{+\infty}\hspace{-0.4cm}|D(f)|^2\hspace{0.1cm}{\rm d}f .$$

Hinweis: Diese Aufgabe bezieht sich auf den Theorieteil von Kapitel 4.1. Berücksichtigen Sie weiterhin, dass die Fourierrücktransformierte eines rechteckförmigen Spektrums

$$X(f)=\left\{ {X_0 \; \rm f\ddot{u}r\; |\it f| < \rm B, \atop {\rm 0 \;\;\; \rm sonst}}\right.$$

wie folgt lautet:

$$x(t) = 2 \cdot X_0 \cdot B \cdot {\rm si} ( 2\pi B t) .$$

Fragebogen

1

Wie lautet das Spektrum X(f) des Signals x(t)? Wie groß sind X(f = 0) und die physikalische, einseitige Bandbreite von x(t)?

$X(f=0) = $

mV/Hz
$B_x =$

Hz

2

Wie lauten die entsprechenden Kenngrößen des Signals y(t)?

$Y(f=0) = $

mV/Hz
$B_y =$

Hz

3

Berechnen Sie das Spektrum D(f) des Differenzsignals d(t) = x(t) – y(t). Wie groß sind D(f = 0) und die physikalische, einseitige Bandbreite Bd?

$D(f=0) = $

mV/Hz
$B_d =$

Hz

4

Wie groß sind die Integralflächen Fx und Fd der Signale x(t) und d(t)?

$F_x =$

Vs
$F_d =$

Vs

5

Wie groß sind die (auf 1 Ω umgerechneten) Energien dieser Signale?

$E_x =$

$\text{V^2s}$
$E_d =$

$\text{V^2s}$


Musterlösung

1. a) Die si–förmige Zeitfunktion x(t) lässt auf ein Rechteckspektrum X(f) schließen. Die absolute, zweiseitige Bandbreite 2 · Bx ist gleich dem Kehrwert der ersten Nullstelle. Daraus folgt:

$$B_x = \frac{1}{2 \cdot T_x} = \frac{1}{2 \cdot 0.1 \hspace{0.1cm}{\rm ms}}\hspace{0.15 cm}\underline{ = 5 \hspace{0.1cm}{\rm kHz}}.$$

Da der Signalwert bei t = 0 gleich der Rechteckfläche ist, ergibt sich für die konstante Höhe:

$$X(f=0) = \frac{x(t=0)}{2 \cdot B_x} = \frac{10 \hspace{0.1cm}{\rm V}}{10 \hspace{0.1cm}{\rm kHz}} \hspace{0.15 cm}\underline{= 10^{-3} \hspace{0.1cm}{\rm V/Hz}}.$$

b) Aus Ty = 0.167 ms erhält man By = 3 kHz. Zusammen mit y(t = 0) = 6V führt dies zum gleichen Spektralwert Y(f = 0) = 10−3 V/Hz.

Rechteckförmiges BP-Spektrum (ML zu Aufgabe A4.1)

c) Aus d(t) = x(t) – y(t) folgt wegen der Linearität der Fouriertransformation:

$$D(f) = X(f) - Y(f).$$

Die Differenz der zwei gleich hohen Rechteckfunktionen führt zu einem rechteckförmigen BP–Spektrum zwischen 3 kHz und 5 kHz. Die (einseitige) Bandbreite beträgt somit Bd = 2 kHz. In diesem Frequenzintervall ist D(f) = 10–3 V/Hz. Außerhalb, also auch bei f = 0, gilt D(f) = 0. d) Nach den fundamentalen Gesetzmäßigkeiten der Fouriertransformation ist das Integral über die Zeitfunktion gleich dem Spektralwert bei f = 0. Daraus folgt:

$$F_x = X(f=0) = \frac{x(t=0)}{2 \cdot B_x} = 10^{-3} \hspace{0.1cm}{\rm V/Hz}\hspace{0.15 cm}\underline{= 10^{-3} \hspace{0.1cm}{\rm Vs}},$$

$$F_d = D(f=0) \hspace{0.15 cm}\underline{= 0}.$$

Das bedeutet: Bei jedem Bandpass–Signal sind die Flächen der positiven Signalanteile genau so groß wie die Flächen der negativen Anteile. e) In beiden Fällen ist die Berechnung im Frequenzbereich einfacher als im Zeitbereich, da hier die Integration auf eine Flächenberechnung von Rechtecken zurückgeführt werden kann:

$$E_x = (10^{-3} \hspace{0.1cm}{\rm V/Hz})^2 \cdot 2 \cdot 5 \hspace{0.1cm}{\rm kHz} \hspace{0.15 cm}\underline{= 10^{-2} \hspace{0.1cm}{\rm V^2s}},$$

$$E_d = (10^{-3} \hspace{0.1cm}{\rm V/Hz})^2 \cdot 2 \cdot 2 \hspace{0.1cm}{\rm kHz} \hspace{0.15 cm}\underline{= 4 \cdot 10^{-3} \hspace{0.1cm}{\rm V^2s}}.$$