Difference between revisions of "Aufgaben:Exercise 2.5Z: Flower Meadow"
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Poisson_Distribution |
}} | }} | ||
− | [[File:P_ID124__Sto_Z_2_5.gif|right|frame| | + | [[File:P_ID124__Sto_Z_2_5.gif|right|frame|flower meadow – another <br>example of the Poisson distribution]] |
− | + | A farmer is happy about the splendor of flowers on his land and wants to know how many dandelions are currently blooming on his meadow. | |
− | * | + | *He knows that the meadow has an area of $5000$ square meters and he also knows from the agricultural school that the number of flowers in a small area is always poisson distributed. |
− | * | + | *He stakes out ten squares, each with an edge length of $\text{25 cm}$ , randomly distributed over the entire meadow and counts the flowers in each of these squares: |
::$$\rm 3, \ 4, \ 1, \ 5, \ 0, \ 3, \ 2, \ 4, \ 2, \ 6.$$ | ::$$\rm 3, \ 4, \ 1, \ 5, \ 0, \ 3, \ 2, \ 4, \ 2, \ 6.$$ | ||
− | + | Consider these numerical values as random results of the discrete random variable $z$. | |
− | + | It is obvious that the sample size is very small at $10$ but – this much is revealed – the farmer is lucky. First consider how you would proceed to solve this task, and then answer the following questions. | |
Line 19: | Line 19: | ||
− | + | ||
− | * | + | Hints: |
− | * | + | *This exercise belongs to the chapter [[Theory_of_Stochastic_Signals/Poisson_Distribution|Poisson distribution]]. |
+ | *Reference is also made to the chapter [[Theory_of_Stochastic_Signals/Moments_of_a_Discrete_Random_Variable|Moments of a Discrete Random Variable]]. | ||
Line 29: | Line 30: | ||
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Find the mean of $z$, that is, the mean number of flowers counted in the ten squares. |
|type="{}"} | |type="{}"} | ||
$m_z \ =$ { 3 3% } | $m_z \ =$ { 3 3% } | ||
− | { | + | {Determine the dispersion of the random variable $z$. |
|type="{}"} | |type="{}"} | ||
$\sigma_z\ = \ $ { 1.732 3% } | $\sigma_z\ = \ $ { 1.732 3% } | ||
− | { | + | {Which of the following statements are true? |
|type="[]"} | |type="[]"} | ||
− | + | + | + Actually, one would have to use considerably more than ten random numbers (squares) for the moment calculation. |
− | + | + | + The random size $z$ is in fact Poisson distributed. |
− | - | + | - The rate $\lambda$ of the Poisson distribution is equal to the dispersion $\sigma_z$. |
− | + | + | + The rate $\lambda$ of the Poisson distribution is equal to the mean $m_z$. |
− | { | + | {Predict the total number $B$ of all flowers in the meadow. |
|type="{}"} | |type="{}"} | ||
− | $B\ = | + | $B\ = \ $ { 240 3% } $\ \text{thousand}$ |
− | { | + | {What is the probability of a square without any flowers? |
|type="{}"} | |type="{}"} | ||
${\rm Pr}(z = 0) \ = \ $ { 5 3% } $\ \%$ | ${\rm Pr}(z = 0) \ = \ $ { 5 3% } $\ \%$ |
Revision as of 21:56, 15 December 2021
A farmer is happy about the splendor of flowers on his land and wants to know how many dandelions are currently blooming on his meadow.
- He knows that the meadow has an area of $5000$ square meters and he also knows from the agricultural school that the number of flowers in a small area is always poisson distributed.
- He stakes out ten squares, each with an edge length of $\text{25 cm}$ , randomly distributed over the entire meadow and counts the flowers in each of these squares:
- $$\rm 3, \ 4, \ 1, \ 5, \ 0, \ 3, \ 2, \ 4, \ 2, \ 6.$$
Consider these numerical values as random results of the discrete random variable $z$.
It is obvious that the sample size is very small at $10$ but – this much is revealed – the farmer is lucky. First consider how you would proceed to solve this task, and then answer the following questions.
Hints:
- This exercise belongs to the chapter Poisson distribution.
- Reference is also made to the chapter Moments of a Discrete Random Variable.
Questions
Musterlösung
(2) Für den quadratischen Mittelwert der Zufallsgröße $z$ gilt entsprechend:
- $$m_{\rm 2\it z}=\frac{1}{10}\cdot (0^2+1^2+ 2\cdot 2^2+ 2\cdot 3^2+2\cdot 4^2+ 5^2+6^2)=12.$$
- Die Varianz ist nach dem Satz von Steiner somit gleich
- $$\sigma_z^2 =12 -3^2 = 3$$
- und dementsprechend die Streuung
- $$\underline{\sigma_z \approx 1.732}.$$
(3) Richtig sind die Lösungsvorschläge 1, 2 und 4:
- Mittelwert und Streuung stimmen hier überein. Dies ist ein Indiz für die Poissonverteilung mit der Rate $\lambda = 3$ (gleich dem Mittelwert und gleich der Varianz, nicht gleich der Streuung).
- Natürlich ist es fragwürdig, diese Aussage auf der Basis von nur zehn Werten zu treffen. Bei den Momenten ist eine geringere Stichprobenanzahl aber weniger gravierend als beispielsweise bei den Wahrscheinlichkeiten.
(4) Insgesamt gibt es $80000$ solcher Quadrate mit jeweils drei Blumen im Mittel.
- Dies lässt auf insgesamt $\underline{B = 240}$ Tausend Blumen schließen.
(5) Diese Wahrscheinlichkeit ergibt sich gemäß der Poissonverteilung zu
- $${\rm Pr}(z = 0) = \frac{3^0}{0!} \cdot{\rm e}^{-3}\hspace{0.15cm}\underline{\approx 5\%}.$$
- Die dieser Aufgabe zugrunde gelegte kleine Stichprobenmenge $N = 10$ hätte allerdings auf die Wahrscheinlichkeit ${\rm Pr}(z = 0) = { 10\%}$ hingedeutet, da nur in einem einzigen Quadrat keine einzige Blume gezählt wurde.