Difference between revisions of "Aufgaben:Exercise 3.4: Characteristic Function"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Stochastische Signaltheorie/*Kapitel* }} right| :Gegeben seien hier die drei Zufallsgrößen <i>x</i…“)
 
 
(18 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/*Kapitel*
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Expected_Values_and_Moments
 
}}
 
}}
  
[[File:P_ID619__Sto_A_3_4.png|right|]]
+
[[File:P_ID619__Sto_A_3_4.png|right|frame|Rectangular and trapezoidal PDF]]
:Gegeben seien hier die drei Zufallsgrößen <i>x</i>, <i>y</i> und <i>z</i> durch ihre jeweiligen Wahrscheinlichkeitsdichtefunktionen:
+
Given here are three random variables&nbsp; $x$,&nbsp; $y$&nbsp; and&nbsp; $z$,&nbsp; mostly by their respective probability density functions:
  
:*Über die Zufallsgröße <i>x</i> ist nichts weiter bekannt: Diese kann sowohl eine diskrete als auch eine kontinuierliche Zufallsgröße sein und eine beliebige WDF <i>f<sub>x</sub></i>(<i>x</i>) besitzen. Der Mittelwert ist allgemein gleich <i>m<sub>x</sub></i>.
+
*Nothing else is known about the random variable&nbsp; $x$:&nbsp; This can be both a discrete or a continuous random variable,&nbsp; and can have any PDF&nbsp; $f_x(x)$&nbsp; The mean is generally equal&nbsp; $m_x$.
 +
*The continuous random variable&nbsp; $y$&nbsp; can take values in the range between&nbsp; $1$&nbsp; to&nbsp; $3$&nbsp; with equal probability.&nbsp; Mean:&nbsp; $m_y = 2.$
 +
*The random variable&nbsp; $z$&nbsp; has the following characteristic function:
 +
:$$C_z ({\it \Omega} ) = {\mathop{\rm si}\nolimits}( {3{\it \Omega}} ) \cdot {\mathop{\rm si}\nolimits} ( {2{\it \Omega} } ).$$
 +
:Besides, the qualitative course of the WDF&nbsp; $f_z(z)$&nbsp; according to the blue sketch is assumed to be known.&nbsp; To be determined are the PDF parameters&nbsp; $a$,&nbsp; $b$,&nbsp; $c$&nbsp; of this PDF.
  
:*Die Zufallsgröße <i>y</i> kann nur Werte im Bereich von 1 bis 3  mit  gleicher Wahrscheinlichkeit annehmen &nbsp;&#8658;&nbsp; Mittelwert <i>m<sub>y</sub></i> = 2.
 
  
:*Die Zufallsgröße <i>z</i> besitzt die folgende charakteristische Funktion:
 
:$$C_z ({\it \Omega}  ) = {\mathop{\rm si}\nolimits}( {3{\it \Omega}} ) \cdot {\mathop{\rm si}\nolimits} ( {2{\it \Omega} } ).$$
 
:Daneben wird noch der qualitative Verlauf der WDF <i>f<sub>z</sub></i>(<i>z</i>) entsprechend der blauen Skizze als bekannt vorausgesetzt. Zu bestimmen sind die WDF-Parameter <i>a</i>, <i>b</i> und <i>c</i>.
 
  
:<b>Hinweis:</b> Diese Aufgabe bezieht sich auf Kapitel 3.3 - Seite 5.
 
  
:Die charakteristische Funktion einer zwischen &plusmn;<i>a</i> gleichverteilten Zufallsgröße <i>z</i> lautet:
+
Hints:  
:$$C_z ( {\it \Omega} ) = {\mathop{\rm si}\nolimits} ( {a {\it \Omega} } )\quad {\rm{mit}}\quad {\mathop{\rm si}\nolimits}( x ) = \sin ( x )/x.$$
+
*This exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments|Expected values and moments]].
 +
*Reference is made to the section&nbsp;  [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments#Characteristic_function|Charakteristic funcion]]&nbsp;.
 +
 +
*The characteristic function of a between&nbsp; $\pm a$&nbsp; uniformly distributed random variable&nbsp; $z$&nbsp; is:
 +
:$$C ( {\it \Omega} ) = {\mathop{\rm si}\nolimits} ( {a {\it \Omega} } )\quad {\rm{with}}\quad {\mathop{\rm si}\nolimits}( x ) = \sin ( x )/x.$$
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Aussagen sind bezüglich der charakteristischen Funktion <i>C<sub>x</sub></i>(<i>&Omega;</i>) stets &ndash; also bei beliebiger WDF &ndash; gültig?
+
{Which statements are valid with respect to the characteristic function&nbsp; $C_x ( {\it \Omega} )$&nbsp; always &ndash; that is, at any PDF&nbsp;?
 
|type="[]"}
 
|type="[]"}
- <i>C<sub>x</sub></i>(<i>&Omega;</i>) ist die Fouriertransformierte von <i>f<sub>x</sub></i>(<i>x</i>).
+
- $C_x ( {\it \Omega} )$&nbsp; is the Fourier transform of&nbsp; $f_x(x)$.
+ Der Realteil von <i>C<sub>x</sub></i>(<i>&Omega;</i>) ist eine gerade Funktion in <i>&Omega;</i>.
+
+ The real part of&nbsp; $C_x ( {\it \Omega} )$&nbsp; is an even function in&nbsp; ${\it \Omega}$.
+ Der Imaginärteil von <i>C<sub>x</sub></i>(<i>&Omega;</i>) ist eine ungerade Funktion in <i>&Omega;</i>.
+
+ The imaginary part of&nbsp; $C_x ( {\it \Omega} )$&nbsp; is an odd function in&nbsp; ${\it \Omega}$.
+ Der Wert an der Stelle <i>&Omega;</i> = 0 ist stets 1.
+
+ The value at location&nbsp; ${\it \Omega} = 0$&nbsp; is always&nbsp; $C_x ( {\it \Omega} ) = 1$.
- Bei mittelwertfreier Zufallsgröße (<i>m<sub>x</sub></i> = 0) ist <i>C<sub>x</sub></i>(<i>&Omega;</i>) stets reell.
+
- For a zero mean random variable&nbsp; $(m_x = 0)$&nbsp; &rArr; &nbsp; $C_x ( {\it \Omega} )$&nbsp; is always real.
  
  
{Berechnen Sie die charakteristische Funktion <i>C<sub>y</sub></i>(<i>&#937;</i>). Wie groß sind Real- und Imaginärteil bei <i>&#937;</i> = &#960; /2?
+
{Calculate the characteristic function&nbsp; $C_y( {\it \Omega} )$.&nbsp; What are the real and imaginary parts at&nbsp; ${\it \Omega} = \pi/2$?
 
|type="{}"}
 
|type="{}"}
$Re[C_y(\omega\ =\ \pi/2)]$ = - { 0.637 3% }
+
${\rm Re}\big[C_y(\Omega\ =\ \pi/2)\big] \ = \ $ { -0.657--0.617 }
$Im[C_y(\omega\ =\ \pi/2)]$ = -  { 0 3% }
+
${\rm Im}\big[C_y(\Omega\ =\ \pi/2)\big] \ = \ $ { 0. }
  
  
{Bestimmen Sie die Kenngrößen <i>a</i>, <i>b</i> und <i>c</i> der WDF <i>f<sub>z</sub></i> (<i>z</i>):
+
{Determine the characteristic parameters&nbsp; $a$,&nbsp; $b$&nbsp; and&nbsp; $c$&nbsp; of the PDF&nbsp; $f_z(z)$.
 
|type="{}"}
 
|type="{}"}
$a$ = { 1 3% }
+
$a \ = \ $ { 1 3% }
$b$ = { 5 3% }
+
$b \ = \ $ { 5 3% }
$c$ = { 0.167 3% }
+
$c \ = \ $ { 0.167 3% }
 
 
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solutions===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:<b>1.</b>&nbsp;&nbsp;<i>C<sub>x</sub></i>(<i>&Omega;</i>) ist nicht die Fouriertransformierte zu <i>f<sub>x</sub></i>(<i>x</i>), sondern die Fourierrücktransformierte:
+
'''(1)'''&nbsp; Correct are&nbsp; <u>the proposed solutions 2, 3 and 4</u>:
:$$C_x( {\it \Omega } ) = \int_{ - \infty }^{ + \infty } {f_x }( x )\cdot {\rm{e}}^{{\rm{j}}{\it \Omega x}} \hspace{0.1cm}{\rm{d}}x .$$
+
* $C_x( {\it \Omega} )$&nbsp; is not the Fourier transform to&nbsp; $f_x(x)$,&nbsp; but the inverse Fourier transform:
 +
:$$C_x( {\it \Omega } ) = \int_{ - \infty }^{ + \infty } {f_x }( x )\cdot {\rm{e}}^{\hspace{0.03cm}{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}{\it \Omega\hspace{0.05cm}\cdot \hspace{0.05cm} x}} \hspace{0.1cm}{\rm{d}}x .$$
 +
*Also for this,&nbsp; the real part is always even and the imaginary part odd.&nbsp; For&nbsp; ${\it \Omega} = 0$&nbsp; holds:
 +
:$$C_x( {\it \Omega} = 0 ) = \int_{ - \infty }^{ + \infty } {f_x }( x ) \hspace{0.1cm}{\rm{d}}x = 1.$$
 +
*The last alternative does not always hold: &nbsp; A two-point distributed random variable&nbsp; $x \in \{-1, +3\}$&nbsp; with probabilities&nbsp; $0.75$&nbsp; and&nbsp; $0.25$&nbsp; is zero mean&nbsp; $(m_x = 0)$,&nbsp; but has still a complex characteristic function.
  
:Auch bei dieser ist der Realteil stets gerade und der Imaginärteil ungerade. Für <i>&Omega;</i> = 0 gilt:
 
:$$C_x( {\it \Omega}  = 0 ) = \int_{ - \infty }^{ + \infty } {f_x }( x ) \hspace{0.1cm}{\rm{d}}x = 1.$$
 
  
:Die letzte Alternative trifft nicht immer zu: Eine zweipunktverteilte Zufallsgröße <i>x</i> &#8712; {&ndash;1; +3} mit den Wahrscheinlichkeiten 0.75 und 0.25 ist zwar mittelwertfrei (<i>m<sub>x</sub></i> = 0), besitzt aber trotzdem eine komplexe charakteristische Funktion. Richtig sind somit <u>die Lösungsvorschläge 2, 3 und 4</u>.
 
  
:<b>2.</b>&nbsp;&nbsp;Entsprechend der allgemeinen Definition gilt:
+
'''(2)'''&nbsp; According to the general definition:
:$$C_y( {\it \Omega  } ) = \int_{ - \infty }^{ + \infty } {f_y }( y )\cdot {\rm{e}}^{{\rm{j}}{\it \Omega y}} \hspace{0.1cm}{\rm{d}}y  = 0.5\int_1^3 {{\rm{e}}^{{\rm{j}}\Omega y} \hspace{0.1cm}{\rm{d}}y.} $$
+
:$$C_y( {\it \Omega  } ) = \int_{ - \infty }^{ + \infty } {f_y }( y )\cdot {\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}{\it \Omega\hspace{0.01cm}\hspace{0.05cm}\cdot \hspace{0.05cm} y}} \hspace{0.1cm}{\rm{d}}y  = 0.5\int_1^3 {{\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}\Omega\hspace{0.05cm}\cdot \hspace{0.05cm} y} \hspace{0.1cm}{\rm{d}}y.} $$
  
:Nach Lösen dieses Integrals ergibt sich:
+
*After solving this integral, we get:
:$$C_y ( {\it \Omega } ) = \frac{{{\rm{e}}^{{\rm{j}}3{\it \Omega } }  - {\rm{e}}^{{\rm{j}}{\it \Omega } } }}{{2{\rm{j}}{\it \Omega } }} = \frac{{{\rm{e}}^{{\rm{j}}{\it \Omega } }  - {\rm{e}}^{{\rm{ - j}}{\it \Omega }} }}{{2{\rm{j}}{\it \Omega } }} \cdot {\rm{e}}^{{\rm{j2}}{\it \Omega } } .$$
+
:$$C_y ( {\it \Omega } ) = \frac{{{\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}3{\it \Omega } }  - {\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}{\it \Omega } } }}{{2{\rm{j}}{\it \Omega } }} = \frac{{{\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}{\it \Omega } }  - {\rm{e}}^{{\rm{ - j}}\hspace{0.05cm}\cdot \hspace{0.05cm}{\it \Omega }} }}{{2{\rm{j}}{\it \Omega } }} \cdot {\rm{e}}^{{\rm{j\hspace{0.05cm}\cdot \hspace{0.05cm}2}}{\it \Omega } } .$$
  
:Mit dem Satz von Euler kann hierfür auch geschrieben werden:
+
*Using Euler's theorem, this can also be written:
:$$C_y ( {\it \Omega }  ) = \frac{{\sin ( {\it \Omega }  )}}{{\it \Omega } } \cdot {\rm{e}}^{{\rm{j2}}{\it \Omega } } .$$
+
:$$C_y ( {\it \Omega }  ) = \frac{{\sin ( {\it \Omega }  )}}{{\it \Omega } } \cdot {\rm{e}}^{{\rm{j2}}\hspace{0.05cm}\cdot \hspace{0.05cm}{\it \Omega } } = {\rm si} ( {\it \Omega }  ) \cdot {\rm{e}}^{{\rm{j2}}\hspace{0.05cm}\cdot \hspace{0.05cm}{\it \Omega } }.$$
  
:Für <i>&Omega;</i> = &pi;/2 erhält man somit einen rein reellen Zahlenwert:
+
*For&nbsp; ${\it \Omega} = \pi/2$&nbsp; we thus obtain a purely real numerical value:
 
:$${\rm Re}[C_y ({\it \Omega}  = {\rm{\pi }}/2 )] = \frac{{\sin( {{\rm{\pi }}/2})}}{{{\rm{\pi }}/2}} \cdot {\rm{e}}^{{\rm{j\pi }}}  =  - \frac{2}{{\rm{\pi }}}
 
:$${\rm Re}[C_y ({\it \Omega}  = {\rm{\pi }}/2 )] = \frac{{\sin( {{\rm{\pi }}/2})}}{{{\rm{\pi }}/2}} \cdot {\rm{e}}^{{\rm{j\pi }}}  =  - \frac{2}{{\rm{\pi }}}
 
\hspace{0.15cm}\underline{\approx -0.637}, \hspace{0.5cm}
 
\hspace{0.15cm}\underline{\approx -0.637}, \hspace{0.5cm}
 
{\rm Im}[C_y ({\it \Omega}  = {\rm{\pi }}/2 )]  \hspace{0.15cm}\underline{= 0}  .$$
 
{\rm Im}[C_y ({\it \Omega}  = {\rm{\pi }}/2 )]  \hspace{0.15cm}\underline{= 0}  .$$
  
:<b>3.</b>&nbsp;&nbsp;Aus der angegebenen Korrespondenz kann abgelesen werden, dass si(3&Omega;) auf eine zwischen &plusmn;3 gleichverteilte Zufallsgröße zurückgeht und si(2&Omega;) die Transformierte einer Gleichverteilung zwischen &plusmn;2 angibt. In der charakteristischen Funktion sind diese beiden Anteile multiplikativ verknüpft. Damit ist die resultierende WDF <i>f<sub>z</sub></i>(<i>z</i>) die Faltung dieser beiden Rechteckfunktionen:
+
 
[[File:P_ID620__Sto_A_3_4_c_neu.png|center|]]
+
'''(3)'''&nbsp; From the given correspondence it can be read that&nbsp; ${\rm si}(3 {\it \Omega} )$&nbsp; is due to an between&nbsp; $\pm 3$&nbsp; equally distributed random variable and&nbsp; ${\rm si}(2 {\it \Omega} )$&nbsp; gives the transform of a uniform distribution between&nbsp; $\pm 2$.  
:Die drei WDF-Parameter lauten somit:
+
[[File:P_ID620__Sto_A_3_4_c_neu.png|right|frame|Construction of the trapezoidal PDF]]
 +
*In the characteristic function, these two proportions are multiplicatively linked.
 +
*Thus,&nbsp; the resulting PDF&nbsp; $f_z(z)$&nbsp; is the convolution of these two rectangular functions.
 +
*The three PDF parameters are thus:
 
:$$\hspace{0.15cm}\underline{a = 1},\quad \hspace{0.15cm}\underline{b = 5},
 
:$$\hspace{0.15cm}\underline{a = 1},\quad \hspace{0.15cm}\underline{b = 5},
\quad \hspace{0.15cm}\underline{c = 1/6}.$$
+
\quad c = 1/6 \hspace{0.15cm}\underline{= 0.167}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Stochastische Signaltheorie|^3.3 Erwartungswerte und Momente^]]
+
[[Category:Theory of Stochastic Signals: Exercises|^3.3 Expected Values and Moments^]]

Latest revision as of 16:48, 6 January 2022

Rectangular and trapezoidal PDF

Given here are three random variables  $x$,  $y$  and  $z$,  mostly by their respective probability density functions:

  • Nothing else is known about the random variable  $x$:  This can be both a discrete or a continuous random variable,  and can have any PDF  $f_x(x)$  The mean is generally equal  $m_x$.
  • The continuous random variable  $y$  can take values in the range between  $1$  to  $3$  with equal probability.  Mean:  $m_y = 2.$
  • The random variable  $z$  has the following characteristic function:
$$C_z ({\it \Omega} ) = {\mathop{\rm si}\nolimits}( {3{\it \Omega}} ) \cdot {\mathop{\rm si}\nolimits} ( {2{\it \Omega} } ).$$
Besides, the qualitative course of the WDF  $f_z(z)$  according to the blue sketch is assumed to be known.  To be determined are the PDF parameters  $a$,  $b$,  $c$  of this PDF.



Hints:

  • The characteristic function of a between  $\pm a$  uniformly distributed random variable  $z$  is:
$$C ( {\it \Omega} ) = {\mathop{\rm si}\nolimits} ( {a {\it \Omega} } )\quad {\rm{with}}\quad {\mathop{\rm si}\nolimits}( x ) = \sin ( x )/x.$$


Questions

1

Which statements are valid with respect to the characteristic function  $C_x ( {\it \Omega} )$  always – that is, at any PDF ?

$C_x ( {\it \Omega} )$  is the Fourier transform of  $f_x(x)$.
The real part of  $C_x ( {\it \Omega} )$  is an even function in  ${\it \Omega}$.
The imaginary part of  $C_x ( {\it \Omega} )$  is an odd function in  ${\it \Omega}$.
The value at location  ${\it \Omega} = 0$  is always  $C_x ( {\it \Omega} ) = 1$.
For a zero mean random variable  $(m_x = 0)$  ⇒   $C_x ( {\it \Omega} )$  is always real.

2

Calculate the characteristic function  $C_y( {\it \Omega} )$.  What are the real and imaginary parts at  ${\it \Omega} = \pi/2$?

${\rm Re}\big[C_y(\Omega\ =\ \pi/2)\big] \ = \ $

${\rm Im}\big[C_y(\Omega\ =\ \pi/2)\big] \ = \ $

3

Determine the characteristic parameters  $a$,  $b$  and  $c$  of the PDF  $f_z(z)$.

$a \ = \ $

$b \ = \ $

$c \ = \ $


Solutions

(1)  Correct are  the proposed solutions 2, 3 and 4:

  • $C_x( {\it \Omega} )$  is not the Fourier transform to  $f_x(x)$,  but the inverse Fourier transform:
$$C_x( {\it \Omega } ) = \int_{ - \infty }^{ + \infty } {f_x }( x )\cdot {\rm{e}}^{\hspace{0.03cm}{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}{\it \Omega\hspace{0.05cm}\cdot \hspace{0.05cm} x}} \hspace{0.1cm}{\rm{d}}x .$$
  • Also for this,  the real part is always even and the imaginary part odd.  For  ${\it \Omega} = 0$  holds:
$$C_x( {\it \Omega} = 0 ) = \int_{ - \infty }^{ + \infty } {f_x }( x ) \hspace{0.1cm}{\rm{d}}x = 1.$$
  • The last alternative does not always hold:   A two-point distributed random variable  $x \in \{-1, +3\}$  with probabilities  $0.75$  and  $0.25$  is zero mean  $(m_x = 0)$,  but has still a complex characteristic function.


(2)  According to the general definition:

$$C_y( {\it \Omega } ) = \int_{ - \infty }^{ + \infty } {f_y }( y )\cdot {\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}{\it \Omega\hspace{0.01cm}\hspace{0.05cm}\cdot \hspace{0.05cm} y}} \hspace{0.1cm}{\rm{d}}y = 0.5\int_1^3 {{\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}\Omega\hspace{0.05cm}\cdot \hspace{0.05cm} y} \hspace{0.1cm}{\rm{d}}y.} $$
  • After solving this integral, we get:
$$C_y ( {\it \Omega } ) = \frac{{{\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}3{\it \Omega } } - {\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}{\it \Omega } } }}{{2{\rm{j}}{\it \Omega } }} = = \frac{{{\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}{\it \Omega } } - {\rm{e}}^{{\rm{ - j}}\hspace{0.05cm}\cdot \hspace{0.05cm}{\it \Omega }} }}{{2{\rm{j}}{\it \Omega } }} \cdot {\rm{e}}^{{\rm{j\hspace{0.05cm}\cdot \hspace{0.05cm}2}}{\it \Omega } } .$$
  • Using Euler's theorem, this can also be written:
$$C_y ( {\it \Omega } ) = \frac{{\sin ( {\it \Omega } )}}{{\it \Omega } } \cdot {\rm{e}}^{{\rm{j2}}\hspace{0.05cm}\cdot \hspace{0.05cm}{\it \Omega } } = {\rm si} ( {\it \Omega } ) \cdot {\rm{e}}^{{\rm{j2}}\hspace{0.05cm}\cdot \hspace{0.05cm}{\it \Omega } }.$$
  • For  ${\it \Omega} = \pi/2$  we thus obtain a purely real numerical value:
$${\rm Re}[C_y ({\it \Omega} = {\rm{\pi }}/2 )] = \frac{{\sin( {{\rm{\pi }}/2})}}{{{\rm{\pi }}/2}} \cdot {\rm{e}}^{{\rm{j\pi }}} = - \frac{2}{{\rm{\pi }}} \hspace{0.15cm}\underline{\approx -0.637}, \hspace{0.5cm} {\rm Im}[C_y ({\it \Omega} = {\rm{\pi }}/2 )] \hspace{0.15cm}\underline{= 0} .$$


(3)  From the given correspondence it can be read that  ${\rm si}(3 {\it \Omega} )$  is due to an between  $\pm 3$  equally distributed random variable and  ${\rm si}(2 {\it \Omega} )$  gives the transform of a uniform distribution between  $\pm 2$.

Construction of the trapezoidal PDF
  • In the characteristic function, these two proportions are multiplicatively linked.
  • Thus,  the resulting PDF  $f_z(z)$  is the convolution of these two rectangular functions.
  • The three PDF parameters are thus:
$$\hspace{0.15cm}\underline{a = 1},\quad \hspace{0.15cm}\underline{b = 5}, \quad c = 1/6 \hspace{0.15cm}\underline{= 0.167}.$$