Difference between revisions of "Aufgaben:Exercise 5.6: OFDM Spectrum"

From LNTwww
 
(17 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Allgemeine Beschreibung von OFDM
+
{{quiz-Header|Buchseite=Modulation_Methods/General_Description_of_OFDM
 
}}
 
}}
  
[[File:P_ID1659__A_5_6.png|right|frame|Real- und Imaginärteil des OFDM-Signals]]
+
[[File:P_ID1659__A_5_6.png|right|frame|Real and imaginary part of the OFDM signal]]
Wir betrachten hier ein OFDM–System mit $N = 4$ Trägern. Zur Vereinfachung beschränken wir uns auf ein einziges Zeitintervall $T$ und gehen auch von der Rahmendauer $T_{\rm R} = T$ aus. Ein Guard–Intervall wird demnach nicht verwendet.
+
In this Exercise,  we consider an OFDM system with  $N = 4$  carriers.  
 +
*For simplicity,  we restrict ourselves to a single time interval  $T$. 
 +
*The frame duration is also  $T_{\rm R} = T.$  
 +
*Accordingly,  a guard interval is not used.
  
Mit der Zusammenfassung von Impulsformung und Modulation durch die gemeinsame Funktion
+
 
:$$ g_\mu (t) = \left\{ \begin{array}{l} s_0 \cdot {\rm{e}}^{ {\kern 1pt} {\rm{j2 \pi}} {\kern 1pt} \mu f_0 t} \quad 0 \le t < T, \\ 0 \quad \quad \quad \quad \quad {\rm sonst} \\ \end{array} \right.$$
+
With the summary of pulse shaping and modulation by the function
ergibt sich das (komplexe) OFDM–Sendesignal im betrachteten Zeitintervall ($0 ≤ t < T$) zu:
+
:$$ g_\mu (t) = \left\{ \begin{array}{l} s_0 \cdot {\rm{e}}^{ {\kern 1pt} {\rm{j2 \pi}} {\kern 1pt} \mu f_0 t} \quad 0 \le t < T, \\ 0 \quad \quad \quad \quad \quad {\rm otherwise} \\ \end{array} \right.$$
 +
the&nbsp; (complex)&nbsp; OFDM transmitted signal in the considered time interval &nbsp;$(0 ≤ t < T)$&nbsp; results to:
 
:$$ s (t) = \sum\limits_{\mu = 0}^{N - 1} {a_{\mu} \cdot g_\mu (t )}.$$
 
:$$ s (t) = \sum\limits_{\mu = 0}^{N - 1} {a_{\mu} \cdot g_\mu (t )}.$$
Alle Trägerkoeffizienten $a_0$, $a_1$, $a_2$ und $a_3$ sind entweder $0$ oder $\pm 1$.. Die Grafik zeigt den Real– und Imaginärteil des Sendesignals $s(t)$ für eine gegebene Kombination von $a_0$, ... , $a_3$, die in der Teilaufgabe (3) ermittelt werden soll.
+
All carrier coefficients &nbsp;$a_0$, &nbsp;$a_1$, &nbsp;$a_2$&nbsp; and &nbsp;$a_3$&nbsp; are either&nbsp; $0$&nbsp; or&nbsp; $\pm 1$.  
 +
 
 +
The diagram shows the real and imaginary parts of the transmitted signal&nbsp; $s(t)$&nbsp; for a given combination of&nbsp; $a_0$, ... , $a_3$, <br>which is to be determined in subtask&nbsp; '''(3)'''.&nbsp;
 +
 
  
  
''Hinweise:''
 
*Die Aufgabe gehört zum  Kapitel [[Modulationsverfahren/Allgemeine_Beschreibung_von_OFDM|Allgemeine Beschreibung von OFDM]].
 
*Bezug genommen wird insbesondere auf die Seiten  [[Modulationsverfahren/Allgemeine_Beschreibung_von_OFDM#Das_Prinzip_von_OFDM_.E2.80.93_Systembetrachtung_im_Zeitbereich|OFDM-Systembetrachtung im Zeitbereich]] sowie [[Modulationsverfahren/Allgemeine_Beschreibung_von_OFDM#Systembetrachtung_im_Frequenzbereich_bei_kausalem_Grundimpuls|OFDM-Systembetrachtung im Frequenzbereich bei kausalem Grundimpuls]].
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
  
  
===Fragebogen===
+
Notes:
 +
*The exercise belongs to the chapter&nbsp; [[Modulation_Methods/Allgemeine_Beschreibung_von_OFDM|General Description of OFDM]].
 +
*Reference is made in particular to the pages&nbsp; 
 +
:&nbsp; &nbsp; &nbsp;[[Modulation_Methods/General_Description_of_OFDM#The_principle_of_OFDM_-_system_consideration_in_the_time_domain|OFDM - System consideration in the time domain]],
 +
:&nbsp; &nbsp; &nbsp;[[Modulation_Methods/General_Description_of_OFDM#System_consideration_in_the_frequency_domain_with_causal_basic_pulse|OFDM - System consideration in the frequency domain with causal basic pulse]].
 +
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie groß ist die Amplitude $s_0$?
+
{What is the amplitude &nbsp;$s_0$&nbsp; of the transmitted signal?
 
|type="{}"}
 
|type="{}"}
$s_0$ = { 5 3% } $V$  
+
$s_0 \ = \ $ { 5 3% } $\ \rm V$  
  
{Wie groß ist die Symboldauer <i>T</i>?
+
{What is the symbol duration &nbsp;$T$?
 
|type="{}"}
 
|type="{}"}
$T$ = { 0.2 3%  } $ms$
+
$T \ = \ $ { 0.2 3%  } $\ \rm ms$
  
{Welche Amplitudenkoeffizienten liegen der Grafik zugrunde?
+
{Which amplitude coefficients are the basis of the diagram?
 
|type="{}"}
 
|type="{}"}
$a_0$ = { 0 3% }  
+
$a_0 \ = \ $ { 0. }  
$a_1$ = { 0 3% }  
+
$a_1 \ = \ $ { 0. }
$a_3$ = { -1 3% }
+
$a_2 \ = \ $ { 0. }  
 +
$a_3 \ = \ ${ -1.01--0.99 }
  
{Welche Aussagen sind bezüglich der OFDM&ndash;Betragsfunktion |<i>s</i>(<i>t</i>)| zutreffend?
+
{Which statements are true regarding the OFDM magnitude function &nbsp;$|s(t)|$?&nbsp;
 
|type="[]"}
 
|type="[]"}
- $|s(t)|$ ist konstant ohne Begrenzung.
+
- $|s(t)|$&nbsp; is constant without limit.
+ $|s(t)|$ ist konstant innerhalb von T.
+
+ $|s(t)|$&nbsp; is constant within the symbol duration &nbsp;$T$.
- $|s(t)|$ besitzt einen cosinusförmigen Verlauf.
+
- $|s(t)|$&nbsp; has a cosine shape.
- $|s(t)|$ besitzt einen sinusförmigen Verlauf.
+
- $|s(t)|$&nbsp; has a sinusoidal shape.
  
{Nun sei <i>a</i><sub>0</sub> = 0, <i>a</i><sub>1</sub> = +1, <i>a</i><sub>2</sub> = &ndash;1 und <i>a</i><sub>3</sub> = +1. Berechnen Sie das Spektrum <i>S</i>(<i>f</i>). Welche Werte ergeben sich für die nachfolgend genannten Frequenzen?
+
{Now let &nbsp;$a_0 = 0$, &nbsp;$a_1 = +1$, &nbsp;$a_2 = -1$,&nbsp; $a_3 = +1$.&nbsp; Calculate the spectrum &nbsp;$S(f)$.&nbsp; <br>Which values result for the mentioned frequencies?
 
|type="{}"}
 
|type="{}"}
$S(f = 0)$ = { 0 3% } $V/Hz$
+
$S(f = 0)\ = \ $ { 0. } $\ \rm mV/Hz$
$S(f = 5 KHz)$ = { 1 3% } $10^{-3}$ $V/Hz$
+
$S(f = 5 \ \rm kHz) \ = \ $ { 1 1% } $\ \rm mV/Hz$
$S(f = 10 KHz)$ = { -1 3% } $10^{-3}$ $V/Hz$
+
$S(f = 10\ \rm kHz) \ = \ ${ -1.01--0.99 } $\ \rm mV/Hz$
$S(f = 15 KHz)$ = { 1 3% } $10^{-3}$ $V/Hz$
+
$S(f = 15 \ \rm kHz) \ = \ $ { 1 1% } $\ \rm mV/Hz$
  
{Interpretieren Sie Ihre Ergebnisse zu c) und e). Welche Aussagen treffen zu?
+
{Interpret your results of subtasks&nbsp; '''(3)'''&nbsp; and&nbsp; '''(5)'''.&nbsp; Which statements are true?
 
|type="[]"}
 
|type="[]"}
+ OFDM erfüllt das erste Nyquist–Kriterium im Zeitbereich.
+
+ OFDM satisfies the first Nyquist criterion in the time domain.
+ OFDM erfüllt das erste Nyquist–Kriterium im Frequenzbereich.
+
+ OFDM satisfies the first Nyquist criterion in the frequency domain.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''  Das Sendesignal $s(t)$ ist eine komplexe Exponentialschwingung mit nur einer Frequenz. Die Amplitude $s_0 = 5 V$ kann direkt der Grafik entnommen werden.
+
'''(1)'''&nbsp; The transmitted signal&nbsp; $s(t)$&nbsp; is a complex oscillation with only one frequency.
 +
*The amplitude&nbsp; $s_0 \hspace{0.15cm}\underline { = 5\ \rm  V}$&nbsp; can be taken directly from the diagram.
 +
 
 +
 
 
   
 
   
'''2.''' Weiterhin erkennt man aus der Grafik die Symboldauer $T = 0.2 ms$. Daraus ergibt sich die Grundfrequenz zu $f_0 = 1/T = 5 kHz$.
+
'''(2)'''&nbsp;  Furthermore, the symbol duration&nbsp; $T\hspace{0.15cm}\underline { = 0.2\ \rm  ms}$&nbsp; can be seen from the diagram.  
 +
*From this the basic frequency results to&nbsp; $f_0 = 1/T = 5\ \rm  kHz$.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp;  In the example shown,&nbsp; there is only one frequency,&nbsp; namely  &nbsp;$3 · f_0$.
 +
*From this follows&nbsp; $a_0 = a_1 = a_2 \hspace{0.15cm}\underline { = 0}$&nbsp; and for the range&nbsp; $0 ≤ t < T$:
 +
:$$s(t) = a_3 \cdot s_0 \cdot {\rm{e}}^{ {\kern 1pt} {\rm{j\hspace{0.04cm}\cdot \hspace{0.04cm}2 \pi}} \hspace{0.04cm}\cdot \hspace{0.04cm} 3 f_0 \hspace{0.04cm}\cdot \hspace{0.04cm} t}= a_3 \cdot s_0 \cdot \cos ({\rm{2 \pi}} \cdot 3 f_0 \cdot t) + \rm{j} \cdot a_3 \cdot s_0 \cdot \sin ({\rm{2 \pi}} \cdot 3 f_0 \cdot t).$$
 +
*Comparison with the sketch&nbsp; $($real part: &nbsp; minus cosine, &nbsp; imaginary part: &nbsp; minus sine$)$&nbsp; gives the following result:
 +
:$$a_3\hspace{0.15cm}\underline {= -1}.$$
 +
 
 +
 
 +
'''(4)'''&nbsp;  The&nbsp; <u>second solution</u>&nbsp; is correct:
 +
* The magnitude function is:  &nbsp; $ |s(t)| = a_3 \cdot s_0 \cdot \sqrt{\cos^2 ({\rm{2 \pi}} \cdot 3 f_0 \cdot t) + \sin^2 ({\rm{2 \pi}} \cdot 3 f_0 \cdot t)}= a_3 \cdot s_0.$
 +
*However,&nbsp; this equation is valid only in the range of symbol duration&nbsp; $T$.
 +
*This means: &nbsp; The OFDM principle works only with a time limit on&nbsp; $T$.
 +
 
  
'''3.'''  Im dargestellten Beispiel gibt es nur eine einzige Frequenz $3 · f_0$. Daraus folgt $a_0 = a_1 = a_2 = 0$ sowie für den Bereich 0 ≤ t < T:
 
$$s(t) = a_3 \cdot s_0 \cdot {\rm{e}}^{ {\kern 1pt} {\rm{j\hspace{0.04cm}\cdot \hspace{0.04cm}2 \pi}} \hspace{0.04cm}\cdot \hspace{0.04cm} 3 f_0 \hspace{0.04cm}\cdot \hspace{0.04cm} t}= a_3 \cdot s_0 \cdot \cos ({\rm{2 \pi}} \cdot 3 f_0 \cdot t) + \rm{j} \cdot a_3 \cdot s_0 \cdot \sin ({\rm{2 \pi}} \cdot 3 f_0 \cdot t).$$
 
Der Vergleich mit der Skizze (Realteil: Minus–Cosinus, Imaginärteil: Minus–Sinus) liefert das folgende Ergebnis: $a_3 = –1$.
 
  
'''4.''' Richtig ist der zweite Lösungsvorschlag. Die Betragsfunktion lautet:
+
'''(5)'''&nbsp;  In general,&nbsp; for the OFDM spectrum:
$$ |s(t)| = a_3 \cdot s_0 \cdot \sqrt{\cos^2 ({\rm{2 \pi}} \cdot 3 f_0 \cdot t) + \sin^2 ({\rm{2 \pi}} \cdot 3 f_0 \cdot t)}= a_3 \cdot s_0.$$
+
:$$S (f) = s_0 \cdot T \cdot \sum\limits_{\mu = 0}^{N - 1} {a_{\mu } \cdot \,} {\rm{sinc}}(T \cdot (f - \mu \cdot f_0 )) \cdot {\rm{e}}^{ - {\rm{j\hspace{0.04cm}\cdot \hspace{0.04cm}2\pi}} \hspace{0.04cm}\cdot \hspace{0.04cm}{T}/{2}\hspace{0.04cm}\cdot \hspace{0.04cm} (f - \mu \cdot f_0 )} .$$
Allerdings gilt diese Gleichung nur im Bereich der Symboldauer T. Das OFDM–Prinzip funktioniert nur bei einer Zeitbegrenzung auf T.
+
*The&nbsp; $\rm sinc$ function results from the time limit on&nbsp; $T$,&nbsp; and the last term in the sum results from the displacement law.
 +
*By the zero crossings of the&nbsp; $\rm sinc$ function at the distance&nbsp; $f_0$&nbsp; as well as&nbsp; $\rm sinc(0) = 1$&nbsp; one obtains
 +
:$$S(f = μ · f_0) = s_0 · T · a_μ.$$  
 +
*With&nbsp; $s_0 = 5 \ \rm V$&nbsp; and&nbsp; $T = 0.2 \ \rm ms$  &nbsp; ⇒  &nbsp; $s_0 · T = 1\ \rm  mV/Hz$&nbsp; it further holds:
 +
:$$ \mu = 0,\hspace{0.1cm} a_0 = 0\text{:}\hspace{0.95cm} S (f = 0) \hspace{0.15cm}\underline {= 0},\hspace{8cm}.$$
 +
:$$\mu = 1, \hspace{0.1cm}a_1 = +1\text{:}\hspace{0.55cm} S (f = 5\,\,{\rm{kHz}}) \hspace{0.15cm}\underline {= +1\,\,{\rm{mV/Hz}}},$$
 +
:$$ \mu = 2, \hspace{0.1cm}a_2 = -1\text{:}\hspace{0.55cm} S (f = 10\,\,{\rm{kHz}}) \hspace{0.15cm}\underline {= -1\,\,{\rm{mV/Hz}}},$$
 +
:$$ \mu = 3, \hspace{0.1cm}a_3 = +1\text{:}\hspace{0.55cm} S (f = 15\,\,{\rm{kHz}}) \hspace{0.15cm}\underline {= +1\,\,{\rm{mV/Hz}}}.$$
  
'''5.'''  Allgemein gilt für das OFDM–Spektrum:
 
$$S (f) = s_0 \cdot T \cdot \sum\limits_{\mu = 0}^{N - 1} {a_{\mu } \cdot \,} {\rm{si}}(\pi \cdot T \cdot (f - \mu \cdot f_0 )) \cdot {\rm{e}}^{ - {\rm{j\hspace{0.04cm}\cdot \hspace{0.04cm}2\pi}} \hspace{0.04cm}\cdot \hspace{0.04cm}{T}/{2}\hspace{0.04cm}\cdot \hspace{0.04cm} (f - \mu \cdot f_0 )} .$$
 
Die si–Funktion ergibt sich aus der zeitlichen Begrenzung auf T, der letzte Term in der Summe aus dem Verschiebungssatz. Durch die Nulldurchgänge der si–Funktion im Abstand $f_0$ sowie $si(0) = 1$ erhält man $S(f = μ · f_0) = s_0 · T · a_μ$. Mit $s_0 = 5 V$ und $T = 0.2 ms$  ⇒  $s_0 · T = 10^{–3} V/Hz$ gilt weiter:
 
$$ \mu = 0,\hspace{0.1cm} a_0 = 0 : S (f = 0) \hspace{0.15cm}\underline {= 0},\hspace{8cm}.$$
 
$$\mu = 1, \hspace{0.1cm}a_1 = +1 : S (f = 5\,\,{\rm{kHz}}) \hspace{0.15cm}\underline {= 10^{-3}\,\,{\rm{V/Hz}}},$$
 
$$ \mu = 2, \hspace{0.1cm}a_2 = -1 : S (f = 10\,\,{\rm{kHz}}) \hspace{0.15cm}\underline {= -10^{-3}\,\,{\rm{V/Hz}}},$$
 
$$ \mu = 3, \hspace{0.1cm}a_3 = +1 : S (f = 15\,\,{\rm{kHz}}) \hspace{0.15cm}\underline {= 10^{-3}\,\,{\rm{V/Hz}}}.$$
 
  
'''6.''' Beide Aussagen sind richtig. Die Orthogonalität bezüglich des Frequenzbereichs wurde bereits in der Teilaufgabe e) gezeigt. Die Orthogonalität hinsichtlich des Zeitbereichs ergibt sich aus der Begrenzung der einzelnen Symbole jeweils auf die Zeitdauer T.
+
'''(6)'''&nbsp;  <u>Both statements</u> are correct:
 +
* The orthogonality with respect to the frequency domain has already been shown in subtask&nbsp; '''(5)'''.&nbsp;
 +
*The orthogonality with respect to the time domain results from the limitation of the individual symbols to the time duration&nbsp; $T$.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 84: Line 114:
  
  
[[Category:Aufgaben zu Modulationsverfahren|^5.5 Allgemeine Beschreibung von OFDM^]]
+
[[Category:Modulation Methods: Exercises|^5.5 General Description of OFDM^]]

Latest revision as of 11:19, 10 January 2022

Real and imaginary part of the OFDM signal

In this Exercise,  we consider an OFDM system with  $N = 4$  carriers.

  • For simplicity,  we restrict ourselves to a single time interval  $T$. 
  • The frame duration is also  $T_{\rm R} = T.$
  • Accordingly,  a guard interval is not used.


With the summary of pulse shaping and modulation by the function

$$ g_\mu (t) = \left\{ \begin{array}{l} s_0 \cdot {\rm{e}}^{ {\kern 1pt} {\rm{j2 \pi}} {\kern 1pt} \mu f_0 t} \quad 0 \le t < T, \\ 0 \quad \quad \quad \quad \quad {\rm otherwise} \\ \end{array} \right.$$

the  (complex)  OFDM transmitted signal in the considered time interval  $(0 ≤ t < T)$  results to:

$$ s (t) = \sum\limits_{\mu = 0}^{N - 1} {a_{\mu} \cdot g_\mu (t )}.$$

All carrier coefficients  $a_0$,  $a_1$,  $a_2$  and  $a_3$  are either  $0$  or  $\pm 1$.

The diagram shows the real and imaginary parts of the transmitted signal  $s(t)$  for a given combination of  $a_0$, ... , $a_3$,
which is to be determined in subtask  (3)



Notes:

     OFDM - System consideration in the time domain,
     OFDM - System consideration in the frequency domain with causal basic pulse.


Questions

1

What is the amplitude  $s_0$  of the transmitted signal?

$s_0 \ = \ $

$\ \rm V$

2

What is the symbol duration  $T$?

$T \ = \ $

$\ \rm ms$

3

Which amplitude coefficients are the basis of the diagram?

$a_0 \ = \ $

$a_1 \ = \ $

$a_2 \ = \ $

$a_3 \ = \ $

4

Which statements are true regarding the OFDM magnitude function  $|s(t)|$? 

$|s(t)|$  is constant without limit.
$|s(t)|$  is constant within the symbol duration  $T$.
$|s(t)|$  has a cosine shape.
$|s(t)|$  has a sinusoidal shape.

5

Now let  $a_0 = 0$,  $a_1 = +1$,  $a_2 = -1$,  $a_3 = +1$.  Calculate the spectrum  $S(f)$. 
Which values result for the mentioned frequencies?

$S(f = 0)\ = \ $

$\ \rm mV/Hz$
$S(f = 5 \ \rm kHz) \ = \ $

$\ \rm mV/Hz$
$S(f = 10\ \rm kHz) \ = \ $

$\ \rm mV/Hz$
$S(f = 15 \ \rm kHz) \ = \ $

$\ \rm mV/Hz$

6

Interpret your results of subtasks  (3)  and  (5).  Which statements are true?

OFDM satisfies the first Nyquist criterion in the time domain.
OFDM satisfies the first Nyquist criterion in the frequency domain.


Solution

(1)  The transmitted signal  $s(t)$  is a complex oscillation with only one frequency.

  • The amplitude  $s_0 \hspace{0.15cm}\underline { = 5\ \rm V}$  can be taken directly from the diagram.


(2)  Furthermore, the symbol duration  $T\hspace{0.15cm}\underline { = 0.2\ \rm ms}$  can be seen from the diagram.

  • From this the basic frequency results to  $f_0 = 1/T = 5\ \rm kHz$.


(3)  In the example shown,  there is only one frequency,  namely  $3 · f_0$.

  • From this follows  $a_0 = a_1 = a_2 \hspace{0.15cm}\underline { = 0}$  and for the range  $0 ≤ t < T$:
$$s(t) = a_3 \cdot s_0 \cdot {\rm{e}}^{ {\kern 1pt} {\rm{j\hspace{0.04cm}\cdot \hspace{0.04cm}2 \pi}} \hspace{0.04cm}\cdot \hspace{0.04cm} 3 f_0 \hspace{0.04cm}\cdot \hspace{0.04cm} t}= a_3 \cdot s_0 \cdot \cos ({\rm{2 \pi}} \cdot 3 f_0 \cdot t) + \rm{j} \cdot a_3 \cdot s_0 \cdot \sin ({\rm{2 \pi}} \cdot 3 f_0 \cdot t).$$
  • Comparison with the sketch  $($real part:   minus cosine,   imaginary part:   minus sine$)$  gives the following result:
$$a_3\hspace{0.15cm}\underline {= -1}.$$


(4)  The  second solution  is correct:

  • The magnitude function is:   $ |s(t)| = a_3 \cdot s_0 \cdot \sqrt{\cos^2 ({\rm{2 \pi}} \cdot 3 f_0 \cdot t) + \sin^2 ({\rm{2 \pi}} \cdot 3 f_0 \cdot t)}= a_3 \cdot s_0.$
  • However,  this equation is valid only in the range of symbol duration  $T$.
  • This means:   The OFDM principle works only with a time limit on  $T$.


(5)  In general,  for the OFDM spectrum:

$$S (f) = s_0 \cdot T \cdot \sum\limits_{\mu = 0}^{N - 1} {a_{\mu } \cdot \,} {\rm{sinc}}(T \cdot (f - \mu \cdot f_0 )) \cdot {\rm{e}}^{ - {\rm{j\hspace{0.04cm}\cdot \hspace{0.04cm}2\pi}} \hspace{0.04cm}\cdot \hspace{0.04cm}{T}/{2}\hspace{0.04cm}\cdot \hspace{0.04cm} (f - \mu \cdot f_0 )} .$$
  • The  $\rm sinc$ function results from the time limit on  $T$,  and the last term in the sum results from the displacement law.
  • By the zero crossings of the  $\rm sinc$ function at the distance  $f_0$  as well as  $\rm sinc(0) = 1$  one obtains
$$S(f = μ · f_0) = s_0 · T · a_μ.$$
  • With  $s_0 = 5 \ \rm V$  and  $T = 0.2 \ \rm ms$   ⇒   $s_0 · T = 1\ \rm mV/Hz$  it further holds:
$$ \mu = 0,\hspace{0.1cm} a_0 = 0\text{:}\hspace{0.95cm} S (f = 0) \hspace{0.15cm}\underline {= 0},\hspace{8cm}.$$
$$\mu = 1, \hspace{0.1cm}a_1 = +1\text{:}\hspace{0.55cm} S (f = 5\,\,{\rm{kHz}}) \hspace{0.15cm}\underline {= +1\,\,{\rm{mV/Hz}}},$$
$$ \mu = 2, \hspace{0.1cm}a_2 = -1\text{:}\hspace{0.55cm} S (f = 10\,\,{\rm{kHz}}) \hspace{0.15cm}\underline {= -1\,\,{\rm{mV/Hz}}},$$
$$ \mu = 3, \hspace{0.1cm}a_3 = +1\text{:}\hspace{0.55cm} S (f = 15\,\,{\rm{kHz}}) \hspace{0.15cm}\underline {= +1\,\,{\rm{mV/Hz}}}.$$


(6)  Both statements are correct:

  • The orthogonality with respect to the frequency domain has already been shown in subtask  (5)
  • The orthogonality with respect to the time domain results from the limitation of the individual symbols to the time duration  $T$.