Difference between revisions of "Aufgaben:Exercise 5.6: OFDM Spectrum"
(16 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Modulation_Methods/General_Description_of_OFDM |
}} | }} | ||
− | [[File:P_ID1659__A_5_6.png|right|frame|Real | + | [[File:P_ID1659__A_5_6.png|right|frame|Real and imaginary part of the OFDM signal]] |
− | + | In this Exercise, we consider an OFDM system with $N = 4$ carriers. | |
+ | *For simplicity, we restrict ourselves to a single time interval $T$. | ||
+ | *The frame duration is also $T_{\rm R} = T.$ | ||
+ | *Accordingly, a guard interval is not used. | ||
− | + | ||
− | :$$ g_\mu (t) = \left\{ \begin{array}{l} s_0 \cdot {\rm{e}}^{ {\kern 1pt} {\rm{j2 \pi}} {\kern 1pt} \mu f_0 t} \quad 0 \le t < T, \\ 0 \quad \quad \quad \quad \quad {\rm | + | With the summary of pulse shaping and modulation by the function |
− | + | :$$ g_\mu (t) = \left\{ \begin{array}{l} s_0 \cdot {\rm{e}}^{ {\kern 1pt} {\rm{j2 \pi}} {\kern 1pt} \mu f_0 t} \quad 0 \le t < T, \\ 0 \quad \quad \quad \quad \quad {\rm otherwise} \\ \end{array} \right.$$ | |
+ | the (complex) OFDM transmitted signal in the considered time interval $(0 ≤ t < T)$ results to: | ||
:$$ s (t) = \sum\limits_{\mu = 0}^{N - 1} {a_{\mu} \cdot g_\mu (t )}.$$ | :$$ s (t) = \sum\limits_{\mu = 0}^{N - 1} {a_{\mu} \cdot g_\mu (t )}.$$ | ||
− | + | All carrier coefficients $a_0$, $a_1$, $a_2$ and $a_3$ are either $0$ or $\pm 1$. | |
+ | |||
+ | The diagram shows the real and imaginary parts of the transmitted signal $s(t)$ for a given combination of $a_0$, ... , $a_3$, <br>which is to be determined in subtask '''(3)'''. | ||
+ | |||
− | |||
− | |||
− | |||
− | |||
− | === | + | Notes: |
+ | *The exercise belongs to the chapter [[Modulation_Methods/Allgemeine_Beschreibung_von_OFDM|General Description of OFDM]]. | ||
+ | *Reference is made in particular to the pages | ||
+ | : [[Modulation_Methods/General_Description_of_OFDM#The_principle_of_OFDM_-_system_consideration_in_the_time_domain|OFDM - System consideration in the time domain]], | ||
+ | : [[Modulation_Methods/General_Description_of_OFDM#System_consideration_in_the_frequency_domain_with_causal_basic_pulse|OFDM - System consideration in the frequency domain with causal basic pulse]]. | ||
+ | |||
+ | |||
+ | |||
+ | ===Questions=== | ||
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {What is the amplitude $s_0$ of the transmitted signal? |
|type="{}"} | |type="{}"} | ||
$s_0 \ = \ $ { 5 3% } $\ \rm V$ | $s_0 \ = \ $ { 5 3% } $\ \rm V$ | ||
− | { | + | {What is the symbol duration $T$? |
|type="{}"} | |type="{}"} | ||
$T \ = \ $ { 0.2 3% } $\ \rm ms$ | $T \ = \ $ { 0.2 3% } $\ \rm ms$ | ||
− | { | + | {Which amplitude coefficients are the basis of the diagram? |
|type="{}"} | |type="{}"} | ||
$a_0 \ = \ $ { 0. } | $a_0 \ = \ $ { 0. } | ||
$a_1 \ = \ $ { 0. } | $a_1 \ = \ $ { 0. } | ||
$a_2 \ = \ $ { 0. } | $a_2 \ = \ $ { 0. } | ||
− | $a_3$ | + | $a_3 \ = \ ${ -1.01--0.99 } |
− | { | + | {Which statements are true regarding the OFDM magnitude function $|s(t)|$? |
|type="[]"} | |type="[]"} | ||
− | - $|s(t)|$ | + | - $|s(t)|$ is constant without limit. |
− | + $|s(t)|$ | + | + $|s(t)|$ is constant within the symbol duration $T$. |
− | - $|s(t)|$ | + | - $|s(t)|$ has a cosine shape. |
− | - $|s(t)|$ | + | - $|s(t)|$ has a sinusoidal shape. |
− | { | + | {Now let $a_0 = 0$, $a_1 = +1$, $a_2 = -1$, $a_3 = +1$. Calculate the spectrum $S(f)$. <br>Which values result for the mentioned frequencies? |
|type="{}"} | |type="{}"} | ||
− | $S(f = 0)\ = \ $ { 0. } $\ \rm | + | $S(f = 0)\ = \ $ { 0. } $\ \rm mV/Hz$ |
$S(f = 5 \ \rm kHz) \ = \ $ { 1 1% } $\ \rm mV/Hz$ | $S(f = 5 \ \rm kHz) \ = \ $ { 1 1% } $\ \rm mV/Hz$ | ||
$S(f = 10\ \rm kHz) \ = \ ${ -1.01--0.99 } $\ \rm mV/Hz$ | $S(f = 10\ \rm kHz) \ = \ ${ -1.01--0.99 } $\ \rm mV/Hz$ | ||
$S(f = 15 \ \rm kHz) \ = \ $ { 1 1% } $\ \rm mV/Hz$ | $S(f = 15 \ \rm kHz) \ = \ $ { 1 1% } $\ \rm mV/Hz$ | ||
− | { | + | {Interpret your results of subtasks '''(3)''' and '''(5)'''. Which statements are true? |
|type="[]"} | |type="[]"} | ||
− | + OFDM | + | + OFDM satisfies the first Nyquist criterion in the time domain. |
− | + OFDM | + | + OFDM satisfies the first Nyquist criterion in the frequency domain. |
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''1 | + | '''(1)''' The transmitted signal $s(t)$ is a complex oscillation with only one frequency. |
+ | *The amplitude $s_0 \hspace{0.15cm}\underline { = 5\ \rm V}$ can be taken directly from the diagram. | ||
+ | |||
+ | |||
− | '''2 | + | '''(2)''' Furthermore, the symbol duration $T\hspace{0.15cm}\underline { = 0.2\ \rm ms}$ can be seen from the diagram. |
+ | *From this the basic frequency results to $f_0 = 1/T = 5\ \rm kHz$. | ||
+ | |||
+ | |||
+ | |||
+ | '''(3)''' In the example shown, there is only one frequency, namely $3 · f_0$. | ||
+ | *From this follows $a_0 = a_1 = a_2 \hspace{0.15cm}\underline { = 0}$ and for the range $0 ≤ t < T$: | ||
+ | :$$s(t) = a_3 \cdot s_0 \cdot {\rm{e}}^{ {\kern 1pt} {\rm{j\hspace{0.04cm}\cdot \hspace{0.04cm}2 \pi}} \hspace{0.04cm}\cdot \hspace{0.04cm} 3 f_0 \hspace{0.04cm}\cdot \hspace{0.04cm} t}= a_3 \cdot s_0 \cdot \cos ({\rm{2 \pi}} \cdot 3 f_0 \cdot t) + \rm{j} \cdot a_3 \cdot s_0 \cdot \sin ({\rm{2 \pi}} \cdot 3 f_0 \cdot t).$$ | ||
+ | *Comparison with the sketch $($real part: minus cosine, imaginary part: minus sine$)$ gives the following result: | ||
+ | :$$a_3\hspace{0.15cm}\underline {= -1}.$$ | ||
+ | |||
+ | |||
+ | '''(4)''' The <u>second solution</u> is correct: | ||
+ | * The magnitude function is: $ |s(t)| = a_3 \cdot s_0 \cdot \sqrt{\cos^2 ({\rm{2 \pi}} \cdot 3 f_0 \cdot t) + \sin^2 ({\rm{2 \pi}} \cdot 3 f_0 \cdot t)}= a_3 \cdot s_0.$ | ||
+ | *However, this equation is valid only in the range of symbol duration $T$. | ||
+ | *This means: The OFDM principle works only with a time limit on $T$. | ||
+ | |||
− | |||
− | |||
− | |||
− | ''' | + | '''(5)''' In general, for the OFDM spectrum: |
− | $$ | + | :$$S (f) = s_0 \cdot T \cdot \sum\limits_{\mu = 0}^{N - 1} {a_{\mu } \cdot \,} {\rm{sinc}}(T \cdot (f - \mu \cdot f_0 )) \cdot {\rm{e}}^{ - {\rm{j\hspace{0.04cm}\cdot \hspace{0.04cm}2\pi}} \hspace{0.04cm}\cdot \hspace{0.04cm}{T}/{2}\hspace{0.04cm}\cdot \hspace{0.04cm} (f - \mu \cdot f_0 )} .$$ |
− | + | *The $\rm sinc$ function results from the time limit on $T$, and the last term in the sum results from the displacement law. | |
+ | *By the zero crossings of the $\rm sinc$ function at the distance $f_0$ as well as $\rm sinc(0) = 1$ one obtains | ||
+ | :$$S(f = μ · f_0) = s_0 · T · a_μ.$$ | ||
+ | *With $s_0 = 5 \ \rm V$ and $T = 0.2 \ \rm ms$ ⇒ $s_0 · T = 1\ \rm mV/Hz$ it further holds: | ||
+ | :$$ \mu = 0,\hspace{0.1cm} a_0 = 0\text{:}\hspace{0.95cm} S (f = 0) \hspace{0.15cm}\underline {= 0},\hspace{8cm}.$$ | ||
+ | :$$\mu = 1, \hspace{0.1cm}a_1 = +1\text{:}\hspace{0.55cm} S (f = 5\,\,{\rm{kHz}}) \hspace{0.15cm}\underline {= +1\,\,{\rm{mV/Hz}}},$$ | ||
+ | :$$ \mu = 2, \hspace{0.1cm}a_2 = -1\text{:}\hspace{0.55cm} S (f = 10\,\,{\rm{kHz}}) \hspace{0.15cm}\underline {= -1\,\,{\rm{mV/Hz}}},$$ | ||
+ | :$$ \mu = 3, \hspace{0.1cm}a_3 = +1\text{:}\hspace{0.55cm} S (f = 15\,\,{\rm{kHz}}) \hspace{0.15cm}\underline {= +1\,\,{\rm{mV/Hz}}}.$$ | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | '''6 | + | '''(6)''' <u>Both statements</u> are correct: |
+ | * The orthogonality with respect to the frequency domain has already been shown in subtask '''(5)'''. | ||
+ | *The orthogonality with respect to the time domain results from the limitation of the individual symbols to the time duration $T$. | ||
{{ML-Fuß}} | {{ML-Fuß}} | ||
Line 85: | Line 114: | ||
− | [[Category: | + | [[Category:Modulation Methods: Exercises|^5.5 General Description of OFDM^]] |
Latest revision as of 11:19, 10 January 2022
In this Exercise, we consider an OFDM system with $N = 4$ carriers.
- For simplicity, we restrict ourselves to a single time interval $T$.
- The frame duration is also $T_{\rm R} = T.$
- Accordingly, a guard interval is not used.
With the summary of pulse shaping and modulation by the function
- $$ g_\mu (t) = \left\{ \begin{array}{l} s_0 \cdot {\rm{e}}^{ {\kern 1pt} {\rm{j2 \pi}} {\kern 1pt} \mu f_0 t} \quad 0 \le t < T, \\ 0 \quad \quad \quad \quad \quad {\rm otherwise} \\ \end{array} \right.$$
the (complex) OFDM transmitted signal in the considered time interval $(0 ≤ t < T)$ results to:
- $$ s (t) = \sum\limits_{\mu = 0}^{N - 1} {a_{\mu} \cdot g_\mu (t )}.$$
All carrier coefficients $a_0$, $a_1$, $a_2$ and $a_3$ are either $0$ or $\pm 1$.
The diagram shows the real and imaginary parts of the transmitted signal $s(t)$ for a given combination of $a_0$, ... , $a_3$,
which is to be determined in subtask (3).
Notes:
- The exercise belongs to the chapter General Description of OFDM.
- Reference is made in particular to the pages
- OFDM - System consideration in the time domain,
- OFDM - System consideration in the frequency domain with causal basic pulse.
Questions
Solution
- The amplitude $s_0 \hspace{0.15cm}\underline { = 5\ \rm V}$ can be taken directly from the diagram.
(2) Furthermore, the symbol duration $T\hspace{0.15cm}\underline { = 0.2\ \rm ms}$ can be seen from the diagram.
- From this the basic frequency results to $f_0 = 1/T = 5\ \rm kHz$.
(3) In the example shown, there is only one frequency, namely $3 · f_0$.
- From this follows $a_0 = a_1 = a_2 \hspace{0.15cm}\underline { = 0}$ and for the range $0 ≤ t < T$:
- $$s(t) = a_3 \cdot s_0 \cdot {\rm{e}}^{ {\kern 1pt} {\rm{j\hspace{0.04cm}\cdot \hspace{0.04cm}2 \pi}} \hspace{0.04cm}\cdot \hspace{0.04cm} 3 f_0 \hspace{0.04cm}\cdot \hspace{0.04cm} t}= a_3 \cdot s_0 \cdot \cos ({\rm{2 \pi}} \cdot 3 f_0 \cdot t) + \rm{j} \cdot a_3 \cdot s_0 \cdot \sin ({\rm{2 \pi}} \cdot 3 f_0 \cdot t).$$
- Comparison with the sketch $($real part: minus cosine, imaginary part: minus sine$)$ gives the following result:
- $$a_3\hspace{0.15cm}\underline {= -1}.$$
(4) The second solution is correct:
- The magnitude function is: $ |s(t)| = a_3 \cdot s_0 \cdot \sqrt{\cos^2 ({\rm{2 \pi}} \cdot 3 f_0 \cdot t) + \sin^2 ({\rm{2 \pi}} \cdot 3 f_0 \cdot t)}= a_3 \cdot s_0.$
- However, this equation is valid only in the range of symbol duration $T$.
- This means: The OFDM principle works only with a time limit on $T$.
(5) In general, for the OFDM spectrum:
- $$S (f) = s_0 \cdot T \cdot \sum\limits_{\mu = 0}^{N - 1} {a_{\mu } \cdot \,} {\rm{sinc}}(T \cdot (f - \mu \cdot f_0 )) \cdot {\rm{e}}^{ - {\rm{j\hspace{0.04cm}\cdot \hspace{0.04cm}2\pi}} \hspace{0.04cm}\cdot \hspace{0.04cm}{T}/{2}\hspace{0.04cm}\cdot \hspace{0.04cm} (f - \mu \cdot f_0 )} .$$
- The $\rm sinc$ function results from the time limit on $T$, and the last term in the sum results from the displacement law.
- By the zero crossings of the $\rm sinc$ function at the distance $f_0$ as well as $\rm sinc(0) = 1$ one obtains
- $$S(f = μ · f_0) = s_0 · T · a_μ.$$
- With $s_0 = 5 \ \rm V$ and $T = 0.2 \ \rm ms$ ⇒ $s_0 · T = 1\ \rm mV/Hz$ it further holds:
- $$ \mu = 0,\hspace{0.1cm} a_0 = 0\text{:}\hspace{0.95cm} S (f = 0) \hspace{0.15cm}\underline {= 0},\hspace{8cm}.$$
- $$\mu = 1, \hspace{0.1cm}a_1 = +1\text{:}\hspace{0.55cm} S (f = 5\,\,{\rm{kHz}}) \hspace{0.15cm}\underline {= +1\,\,{\rm{mV/Hz}}},$$
- $$ \mu = 2, \hspace{0.1cm}a_2 = -1\text{:}\hspace{0.55cm} S (f = 10\,\,{\rm{kHz}}) \hspace{0.15cm}\underline {= -1\,\,{\rm{mV/Hz}}},$$
- $$ \mu = 3, \hspace{0.1cm}a_3 = +1\text{:}\hspace{0.55cm} S (f = 15\,\,{\rm{kHz}}) \hspace{0.15cm}\underline {= +1\,\,{\rm{mV/Hz}}}.$$
(6) Both statements are correct:
- The orthogonality with respect to the frequency domain has already been shown in subtask (5).
- The orthogonality with respect to the time domain results from the limitation of the individual symbols to the time duration $T$.