Difference between revisions of "Aufgaben:Exercise 5.7: OFDM Transmitter using IDFT"

From LNTwww
 
Line 60: Line 60:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''   Since no guard interval is considered here, the symbol duration  $T$  is equal to the frame duration  $T_{\rm{R}} = 0.25 \ \rm ms$.  
+
'''(1)'''   Since no guard interval is considered here,  the symbol duration  $T$  is equal to the frame duration  $T_{\rm{R}} = 0.25 \ \rm ms$.  
 
*For  $N = 4$  carriers and  $\rm 16–QAM$,  the bit rate at the input is:
 
*For  $N = 4$  carriers and  $\rm 16–QAM$,  the bit rate at the input is:
 
:$$R_{\rm{B}} = \frac{1}{T_{\rm{B}}} = \frac{4 \cdot {\rm{log}_2}\hspace{0.08cm}(16)}{T} = \frac{4 \cdot 4}{0.25\,\,{\rm ms}}\hspace{0.15cm}\underline {= 64\,\,{\rm kbit/s}}.$$
 
:$$R_{\rm{B}} = \frac{1}{T_{\rm{B}}} = \frac{4 \cdot {\rm{log}_2}\hspace{0.08cm}(16)}{T} = \frac{4 \cdot 4}{0.25\,\,{\rm ms}}\hspace{0.15cm}\underline {= 64\,\,{\rm kbit/s}}.$$
  
  
'''(2)'''   From the signal space allocation, it follows for the carrier coefficients  $($the index  $k$  is omitted$)$:
+
'''(2)'''   From the signal space allocation,  it follows for the carrier coefficients  $($the index  $k$  is omitted$)$:
:$${\rm{Bit \quad sequence}}\hspace{0.2cm}1111:\hspace{0.5cm} D_0  =  -1 - {\rm{j}}\hspace{0.4cm}\Rightarrow\hspace{0.3cm}{\rm Re}[D_0]\hspace{0.15cm}\underline{=-1},\hspace{0.2cm}{\rm Im}[D_0]\hspace{0.15cm}\underline{=-1},$$  
+
:$${\text{Bit sequence}}\hspace{0.2cm}1111:\hspace{0.5cm} D_0  =  -1 - {\rm{j}}\hspace{0.4cm}\Rightarrow\hspace{0.3cm}{\rm Re}[D_0]\hspace{0.15cm}\underline{=-1},\hspace{0.2cm}{\rm Im}[D_0]\hspace{0.15cm}\underline{=-1},$$  
:$${\rm{Bit \quad sequence}}\hspace{0.2cm}0111:\hspace{0.5cm} D_1  =  -1 + {\rm{j}}\hspace{0.4cm}\Rightarrow\hspace{0.3cm}{\rm Re}[D_1]\hspace{0.15cm}\underline{=-1},\hspace{0.2cm}{\rm Im}[D_1]\hspace{0.15cm}\underline{=+1},$$  
+
:$${\text{Bit sequence}}\hspace{0.2cm}0111:\hspace{0.5cm} D_1  =  -1 + {\rm{j}}\hspace{0.4cm}\Rightarrow\hspace{0.3cm}{\rm Re}[D_1]\hspace{0.15cm}\underline{=-1},\hspace{0.2cm}{\rm Im}[D_1]\hspace{0.15cm}\underline{=+1},$$  
:$${\rm{Bit \quad sequence}}\hspace{0.2cm}1000:\hspace{0.5cm} D_2  =  +3 - 3{\rm{j}},\hspace{0.15cm}\Rightarrow\hspace{0.3cm}{\rm Re}[D_2]\hspace{0.15cm}\underline{=+3},\hspace{0.2cm}{\rm Im}[D_2]\hspace{0.15cm}\underline{=-3},$$  
+
:$${\text{Bit sequence}}\hspace{0.2cm}1000:\hspace{0.5cm} D_2  =  +3 - 3{\rm{j}},\hspace{0.15cm}\Rightarrow\hspace{0.3cm}{\rm Re}[D_2]\hspace{0.15cm}\underline{=+3},\hspace{0.2cm}{\rm Im}[D_2]\hspace{0.15cm}\underline{=-3},$$  
:$${\rm{Bit \quad sequence}}\hspace{0.2cm}0000:\hspace{0.5cm} D_3  =  +3 + 3{\rm{j}}\hspace{0.2cm}\Rightarrow\hspace{0.3cm}{\rm Re}[D_3]\hspace{0.15cm}\underline{=+3},\hspace{0.2cm}{\rm Im}[D_3]\hspace{0.15cm}\underline{=+3}.$$  
+
:$${\text{Bit sequence}}\hspace{0.2cm}0000:\hspace{0.5cm} D_3  =  +3 + 3{\rm{j}}\hspace{0.2cm}\Rightarrow\hspace{0.3cm}{\rm Re}[D_3]\hspace{0.15cm}\underline{=+3},\hspace{0.2cm}{\rm Im}[D_3]\hspace{0.15cm}\underline{=+3}.$$  
  
  
'''(3)'''   The given IDFT equation is with  $N = 4$:
+
'''(3)'''   The given  $\rm IDFT$  equation is with  $N = 4$:
 
:$$d_{\nu } = \sum\limits_{\mu = 0}^{N - 1} {D_{\mu } \cdot {\rm{e}}^{ \hspace{0.04cm} {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} \pi/2 \hspace{0.04cm}\cdot \hspace{0.04cm}\nu \hspace{0.04cm}\cdot \hspace{0.04cm} \mu } } .$$
 
:$$d_{\nu } = \sum\limits_{\mu = 0}^{N - 1} {D_{\mu } \cdot {\rm{e}}^{ \hspace{0.04cm} {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} \pi/2 \hspace{0.04cm}\cdot \hspace{0.04cm}\nu \hspace{0.04cm}\cdot \hspace{0.04cm} \mu } } .$$
 
*From this we obtain for  $ν = 0$, ... , $3$:
 
*From this we obtain for  $ν = 0$, ... , $3$:
Line 81: Line 81:
  
  
'''(4)'''&nbsp;  The <u>last two solutions</u> are correct:
+
'''(4)'''&nbsp;  The&nbsp; <u>last two solutions</u>&nbsp; are correct:
* For OFDM, the crest factor is rather large.
+
* For OFDM,&nbsp; the crest factor is rather large.
 
*This can lead to problems in terms of linearity requirements and energy efficiency for the amplifier circuits used.
 
*This can lead to problems in terms of linearity requirements and energy efficiency for the amplifier circuits used.
  

Latest revision as of 18:03, 11 January 2022

Block diagram of the IDFT

In this exercise,  we take a closer look at an OFDM transmitter implemented using the  "Inverse Discrete Fourier Transform"  $\rm (IDFT)$.    Thereby it is valid:

  • The system has  $N = 4$  carriers.
  • The frame duration is  $T_{\ \rm R} = 0.25 \ \rm ms$.
  • A guard interval is not used.
  • In each frame  $16$  bits are transmitted.
  • The upper right diagram shows the block  "IDFT"  of the OFDM transmitter structure.
  • Here,  four bits each result in a complex symbol according to the  $\rm16–QAM$  signal space allocation sketched below left.


Suggested 16–QAM signal space allocation











Notes:

$$\quad d_{\nu,\ k} = \sum\limits_{\mu = 0}^{N - 1} {D_{\mu, \ k} \cdot w^{ - \nu \cdot \mu } } \quad {\rm{mit}} \quad w = {\rm{e}}^{ - {\rm{j}} {\rm{2\pi}}/N}.$$


Questions

1

Specify the maximum data bit rate of the system.

$R_{\rm B} \ = \ $

$\ \rm kbit/s$

2

For the given 16-QAM signal space allocation,  specify the complex carrier coefficients  $D_\mu$  for the following input bit sequences.

${\rm Re}\big [D_0 \big ] \ = \ $

$\ \ \text{for the bit sequence 1111}$
${\rm Im}\big [D_0\big ] \ = \ $

${\rm Re}\big [D_1\big ] \ = \ $

$\ \ \text{for the bit sequence 0111}$
${\rm Im}\big [D_1\big ] \ = \ $

${\rm Re}\big [D_2\big ] \ = \ $

$\ \ \text{for the bit sequence 1000}$
${\rm Im}\big [D_2\big ] \ = \ $

${\rm Re}\big [D_3\big ] \ = \ $

$\ \ \text{for the bit sequence 0000}$
${\rm Im}\big [D_3\big ] \ = \ $

3

From this,  calculate the discrete time domain values  $d_\nu$  within the frame.

${\rm Re}\big [d_0\big ] \ = \ $

${\rm Im}\big [d_0\big ] \ = \ $

${\rm Re}\big [d_1\big ] \ = \ $

${\rm Im}\big [d_1\big ] \ = \ $

${\rm Re}\big [d_2\big ] \ = \ $

${\rm Im}\big [d_2\big ] \ = \ $

${\rm Re}\big [d_3\big ] \ = \ $

${\rm Im}\big [d_3\big ] \ = \ $

4

Which statements are true for the crest factor,  which denotes the ratio of the peak value to the rms value of an alternating quantity?

The crest factor is rather low for an OFDM system.
The crest factor can become very large in OFDM systems.
A large crest factor can lead to implementation problems.


Solution

(1)  Since no guard interval is considered here,  the symbol duration  $T$  is equal to the frame duration  $T_{\rm{R}} = 0.25 \ \rm ms$.

  • For  $N = 4$  carriers and  $\rm 16–QAM$,  the bit rate at the input is:
$$R_{\rm{B}} = \frac{1}{T_{\rm{B}}} = \frac{4 \cdot {\rm{log}_2}\hspace{0.08cm}(16)}{T} = \frac{4 \cdot 4}{0.25\,\,{\rm ms}}\hspace{0.15cm}\underline {= 64\,\,{\rm kbit/s}}.$$


(2)  From the signal space allocation,  it follows for the carrier coefficients  $($the index  $k$  is omitted$)$:

$${\text{Bit sequence}}\hspace{0.2cm}1111:\hspace{0.5cm} D_0 = -1 - {\rm{j}}\hspace{0.4cm}\Rightarrow\hspace{0.3cm}{\rm Re}[D_0]\hspace{0.15cm}\underline{=-1},\hspace{0.2cm}{\rm Im}[D_0]\hspace{0.15cm}\underline{=-1},$$
$${\text{Bit sequence}}\hspace{0.2cm}0111:\hspace{0.5cm} D_1 = -1 + {\rm{j}}\hspace{0.4cm}\Rightarrow\hspace{0.3cm}{\rm Re}[D_1]\hspace{0.15cm}\underline{=-1},\hspace{0.2cm}{\rm Im}[D_1]\hspace{0.15cm}\underline{=+1},$$
$${\text{Bit sequence}}\hspace{0.2cm}1000:\hspace{0.5cm} D_2 = +3 - 3{\rm{j}},\hspace{0.15cm}\Rightarrow\hspace{0.3cm}{\rm Re}[D_2]\hspace{0.15cm}\underline{=+3},\hspace{0.2cm}{\rm Im}[D_2]\hspace{0.15cm}\underline{=-3},$$
$${\text{Bit sequence}}\hspace{0.2cm}0000:\hspace{0.5cm} D_3 = +3 + 3{\rm{j}}\hspace{0.2cm}\Rightarrow\hspace{0.3cm}{\rm Re}[D_3]\hspace{0.15cm}\underline{=+3},\hspace{0.2cm}{\rm Im}[D_3]\hspace{0.15cm}\underline{=+3}.$$


(3)  The given  $\rm IDFT$  equation is with  $N = 4$:

$$d_{\nu } = \sum\limits_{\mu = 0}^{N - 1} {D_{\mu } \cdot {\rm{e}}^{ \hspace{0.04cm} {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} \pi/2 \hspace{0.04cm}\cdot \hspace{0.04cm}\nu \hspace{0.04cm}\cdot \hspace{0.04cm} \mu } } .$$
  • From this we obtain for  $ν = 0$, ... , $3$:
$$d_0 = D_0 + D_1 +D_2 +D_3 = 4 \hspace{2.9cm}\Rightarrow\hspace{0.4cm}{\rm Re}[d_0]\hspace{0.15cm}\underline{=4},\hspace{0.2cm}{\rm Im}[d_0]\hspace{0.15cm}\underline{=0},$$
$$d_1 = D_0 + {\rm{j}} \cdot D_1 - D_2 -{\rm{j}} \cdot D_3 = -2 + 2 \cdot {\rm{j}}\hspace{0.4cm}\Rightarrow\hspace{0.4cm}{\rm Re}[d_1]\hspace{0.15cm}\underline{=-2},\hspace{0.2cm}{\rm Im}[d_1]\hspace{0.15cm}\underline{=+2},$$
$$d_2 = D_0 - D_1 + D_2 - D_3 = -8 \cdot {\rm{j}}\hspace{2.1cm}\Rightarrow\hspace{0.4cm}{\rm Re}[d_2]\hspace{0.15cm}\underline{=0},\hspace{0.2cm}{\rm Im}[d_2]\hspace{0.15cm}\underline{=-8},$$
$$d_3 = D_0 - {\rm{j}} \cdot D_1 - D_2 +{\rm{j}} \cdot D_3 = -6 + 6 \cdot {\rm{j}}\hspace{0.4cm}\Rightarrow\hspace{0.4cm}{\rm Re}[d_3]\hspace{0.15cm}\underline{=-6},\hspace{0.2cm}{\rm Im}[d_3]\hspace{0.15cm}\underline{=+6}.$$


(4)  The  last two solutions  are correct:

  • For OFDM,  the crest factor is rather large.
  • This can lead to problems in terms of linearity requirements and energy efficiency for the amplifier circuits used.