Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 3.9Z: Sine Transformation"

From LNTwww
Line 4: Line 4:
  
 
[[File:P_ID137__Sto_Z_3_9.png|right|frame|Input–PDF and characteristic curve]]
 
[[File:P_ID137__Sto_Z_3_9.png|right|frame|Input–PDF and characteristic curve]]
In this task, we consider a random variable  x  with  sin2–förm PDF in the range between  x=0  and  x=2:
+
In this task, we consider a random variable  x  with  sin2& shaped PDF in the range between  x=0  and  x=2:
:$$f_x(x)= \sin^2({\rm\pi}/{\rm 2}\cdot x) \hspace{1cm}\rm f\ddot{u}r\hspace{0.15cm}{\rm 0\le \it x \le \rm 2} .$$
+
:$$f_x(x)= \sin^2({\rm\pi}/{\rm 2}\cdot x) \hspace{1cm}\rm for\hspace{0.15cm}{\rm 0\le \it x \le \rm 2} .$$
  
 
Outside of this, the PDF is identically zero.
 
Outside of this, the PDF is identically zero.

Revision as of 14:11, 12 January 2022

Input–PDF and characteristic curve

In this task, we consider a random variable  x  with  sin2& shaped PDF in the range between  x=0  and  x=2:

fx(x)=sin2(π/2x)for0x2.

Outside of this, the PDF is identically zero.

The mean and rms of this random variable  x  have already been determined in the  Exercise 3.3  :

mx=1,σx=0.361.

Another random variable is obtained by transformation using the nonlinear characteristic curve

y=g(x)=sin(π/2x).

The figure shows in each case in the range  0x2:

  • above the PDF  fx(x),
  • below the nonlinear characteristic  y=g(x).





Hints:

  • Given are the two indefinite integrals:
sin3(ax)dx=13acos3(ax)1acos(ax),
sin4(ax)dx=38x14asin(2ax)+132asin(4ax).


Questions

1

Which of the following statements are true?

y  is limited to the value range  0y1  .
y  is limited to the value range  0<y1 .
The mean  my  is less than the mean  mx.

2

Calculate the mean of the random variable  y.

my = 

3

Calculate the root mean square of  y  and the rms σy .

σy = 

4

Calculate the PDF fy(y).  Note the symmetry properties.  What PDF–value results for  y=0.6 ?

fy(y=0.6) = 

5

What is the PDF value for  y=1?  Interpret the result.  What is the probability that  y  is exactly equal  1 ?

Pr(y=1) = 


Solution

(1)  Correct are the second and the third suggested solutions:

  • Because of the range of values of  x  and the given characteristic curve,  y  cannot take values smaller than  0  or larger than  1  respectively.
  • The value  y=0  cannot occur either, however, since neither  x=0  nor  x=2  are possible.
  • With these properties, the result is surely  my<1, i.e., a smaller value than  mx=1  (see specification).


(2)  To solve this task, one could, for example, first determine the PDF  fy(y)  and calculate  my  from it in the usual way.

  • The direct way leads to the same result:
my=E[y]=E[g(x)]=+g(x)fx(x)dx.
  • With the current functions  g(x)  and  fx(x)  we obtain:
my=20sin3(π/2x)dx=23πcos3(π/2x)2πcos(3π/2x)|20=83π=0.849_.


(3)  By analogy with point  (2)  holds:

m2y=E[y2]=E[g2(x)]=+g2(x)fx(x)dx.
  • This leads to the result:
m_{ 2 y}=\int_{\rm 0}^{\rm 2}\hspace{-0. 15cm}\sin^{\rm 4}({\rm \pi}/{\rm 2}\cdot x)\, {\rm d} x= \frac{\rm 3}{\rm 8}\cdot x-\frac{\rm 1}{\rm 2\cdot\pi}\cdot \sin(\rm \pi\cdot{\it x})+\frac{\rm 1}{\rm 16\cdot\pi}\cdot \sin(\rm 2 \pi\cdot {\it x})\Big|_{\rm 0}^{\rm 2} \hspace{0.15cm}{= \rm  0.75}.
  • With the result from  (2)  it thus follows for the rms:
σy=34(83π)20.172_.


(4)  Due to the symmetry of PDF  fx(x)  and characteristic curve  y=g(x)  um  x=1  the two domains yield.

  • 0x1  and
  • 1x2


each give the same contribution for fy(y).

  • In the first domain, the derivative of the characteristic curve is positive:  g(x)=π/2cos(π/2x).
  • The inverse function is:  x=h(y)=2/πarcsin(y).
  • Taking into account the second contribution by the factor  2  we getär the searched PDF in the range  0y1 ):
fy(y)=2sin2(π/2x)π/2cos(π/2x)|x=2/πarcsin(y).
  • outside fy(y)is0. This leads to the intermediate result
fy(y)=4πsin2(arcsin(y))1sin2(arcsin(y)).
  • And because of  sin(arcsin(y))=y:
$$f_y(y)=\frac{ 4}{\pi}\cdot \frac{ y^{2}}{\sqrt{1- y^{\rm 2}}.$$
  • At the point  y=0.6  one obtains the value  fy(y=0.6)=0.573_.
  • On the right, this PDF  fy(y)  is shown graphically.



(5)  The PDF is infinitely large at the point  y=1 .

  • This is due to the fact that at this point the derivative  g(x)  of the characteristic curve runs horizontally.
  • However, since  y  is a continuous random größe, nevertheless  Pr(y=1)=0_ holds.


This means:

  • An infinity point in the PDF is not identical to a Dirac function.
  • Or more casually expressed:   An infinity point in the PDF is "less" than a Dirac function.