Difference between revisions of "Aufgaben:Exercise 5.8Z: Cyclic Prefix and Guard Interval"

From LNTwww
 
(19 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Realisierung von OFDM-Systemen
+
{{quiz-Header|Buchseite=Modulation_Methods/Implementation_of_OFDM_Systems
 
}}
 
}}
  
[[File:P_ID1664__Z_5_8.png|right|frame|Zyklisches Präfix, <br>Guard-Intervall und Ausgangssysmbol]]
+
[[File:EN_Z_5_8.png|right|frame|OFDM scheme with cyclic prefix]]
Wir gehen in dieser Aufgabe von einem OFDM–System mit $N = 8$ Trägern und zyklischem Präfix aus. Der Subträgerabstand sei $f_0 = 4 \ \rm kHz$. Die Grafik zeigt das Prinzip des zyklischen Präfixes.
+
In this exercise,&nbsp; we assume an&nbsp; $\rm OFDM$ system with &nbsp;$N = 8$&nbsp; carriers and cyclic prefix.&nbsp; Let the subcarrier spacing be &nbsp;$f_0 = 4 \ \rm kHz$ &nbsp; &rArr; &nbsp; basic symbol duration:&nbsp; $T=1/f_0$.&nbsp; The diagram shows the principle of the cyclic prefix.
*Die Übertragung erfolgt über einen Zweiwegekanal, wobei beide Pfade verzögert sind. Die Kanalimpulsantwort lautet somit mit $τ_1 = \ \rm 50 μs$ und $τ_2 = 125\ \rm  μs$:
+
*Transmission is via a two-way channel,&nbsp; with both paths delayed.&nbsp; The channel impulse response is thus with&nbsp; $τ_1 = \ \rm 50 &micro;s$&nbsp; and &nbsp;$τ_2 = 125\ \rm  &micro;s$:
 
:$$ h(t) = h_1 \cdot \delta (t- \tau_1) + h_2 \cdot \delta (t- \tau_2).$$
 
:$$ h(t) = h_1 \cdot \delta (t- \tau_1) + h_2 \cdot \delta (t- \tau_2).$$
*Der Einsatz eines solchen zyklischen Präfixes vermindert allerdings die Bandbreiteneffizienz (Verhältnis von Symbolrate zu Bandbreite) um den Faktor
+
*However,&nbsp; the use of such a cyclic prefix decreases the bandwidth efficiency&nbsp; $($ratio of symbol rate to bandwidth$)$&nbsp; by a factor of
 
:$$ \beta = \frac{1}{{1 + T_{\rm{G}} /T}} $$
 
:$$ \beta = \frac{1}{{1 + T_{\rm{G}} /T}} $$
:und führt auch zu einer Verringerung des Signal&ndash;Rausch&ndash;Verhältnisses um ebenfalls diesen Wert <i>&beta;</i>.  
+
:and leads also to a reduction of the signal-to-noise ratio by this value&nbsp; $\beta$&nbsp; as well.  
*Voraussetzung für die Gültigkeit des hier angegebenen SNR&ndash;Verlustes ist allerdings, dass die Impulsantworten $g_{\rm S}(t)$ und $g_{\rm E}(t)$ von Sende&ndash; und Empfangsfilter an die Symboldauer $T$ angepasst sind (Matched&ndash;Filter&ndash;Ansatz).
+
*However,&nbsp; a prerequisite for the validity of the SNR loss given here is that the impulse responses &nbsp;$g_{\rm S}(t)$&nbsp; and &nbsp;$g_{\rm E}(t)$&nbsp; of the transmit filter&nbsp; (German:&nbsp; "Sendefilter" &nbsp; &rArr;  &nbsp; subscript:&nbsp; "S")&nbsp; and the receive filter&nbsp; (German:&nbsp; "Empfangsfilter" &nbsp; &rArr;  &nbsp; subscript:&nbsp; "E")&nbsp; are matched to the symbol duration &nbsp;$T$&nbsp; $($matched&ndash;filter approach$)$.
  
  
''Hinweise:''
 
*Die Aufgabe gehört zum  Kapitel [[Modulationsverfahren/Realisierung_von_OFDM-Systemen|Realisierung von OFDM-Systemen]].
 
*Bezug genommen wird insbesondere auf die Seiten  [[Modulationsverfahren/Realisierung_von_OFDM-Systemen#Zyklisches_Pr.C3.A4fix|Zyklisches Präfix]] sowie [[Modulationsverfahren/Realisierung_von_OFDM-Systemen#OFDM.E2.80.93System_mit_zyklischem_Pr.C3.A4fix|OFDM-System mit zyklischem Präfix]].
 
*Sollte die Eingabe des Zahlenwertes &bdquo;0&rdquo; erforderlich sein, so geben Sie bitte &bdquo;0.&rdquo; ein.
 
  
  
  
===Fragebogen===
+
Notes:
 +
*The exercise belongs to the chapter&nbsp; [[Modulation_Methods/Realisierung_von_OFDM-Systemen|Implementation of OFDM Systems]].
 +
*Reference is made in particular to the pages&nbsp;  [[Modulation_Methods/Implementation_of_OFDM_Systems#Cyclic_Prefix|Cyclic Prefix]]&nbsp; and &nbsp;[[Modulation_Methods/Implementation_of_OFDM_Systems#OFDM_system_with_cyclic_prefix|OFDM system with cyclic prefix]].
 +
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Geben Sie die Kernsymboldauer $T$ an.
+
{Specify the basic symbol duration &nbsp;$T$.
 
|type="{}"}
 
|type="{}"}
$T \ = \ $ { 250 3% } $\ \rm μs$
+
$T \ = \ $ { 250 3% } $\ \rm &micro; s$
  
{Wie lang sollte das Guard–Intervall $T_{\rm G}$ mindestens sein?
+
{What should be the minimum length of the guard interval &nbsp;$T_{\rm G}$?&nbsp;
 
|type="{}"}
 
|type="{}"}
$T_{\rm G}\ = \ $ { 125 3% } $\ \rm μs$
+
$T_{\rm G}\ = \ $ { 125 3% } $\ \rm &micro; s$
  
{Bestimmen Sie die resultierende Rahmendauer  $T_{\rm R}$.
+
{Determine the resulting frame duration &nbsp;$T_{\rm R}$.
 
|type="{}"}
 
|type="{}"}
$T_{\rm R}\ = \ $ { 375 3% } $\ \rm μs$
+
$T_{\rm R}\ = \ $ { 375 3% } $\ \rm &micro; s$
  
{Welche Aussagen sind richtig? Durch eine Guardlücke, also das Nullsetzen des OFDM–Signals im Guard–Intervall, können
+
{Which statements are correct?&nbsp; By using a guard gap,&nbsp; i.e. setting the OFDM signal to zero in the guard interval,&nbsp; it is possible to
 
|type="[]"}
 
|type="[]"}
- Intercarrier–Interferenzen (ICI) unterdrückt werden,
+
- suppress intercarrier interference&nbsp; $\rm (ICI)$,&nbsp;
+ Impulsinterferenzen (ISI) unterdrückt werden.
+
+ suppress intersymbol interference&nbsp; $\rm (ISI)$.&nbsp;
  
{Welche Aussagen sind richtig? Durch ein zyklisches Präfix, also durch eine zyklische Erweiterung des OFDM–Signals im Guard–Intervall, können
+
{Which statements are correct?&nbsp; By using a cyclic prefix,&nbsp; i.e. a cyclic extension of the OFDM signal in the guard interval,&nbsp; it is possible to
 
|type="[]"}
 
|type="[]"}
+ Intercarrier–Interferenzen (ICI) unterdrückt werden,
+
+ suppress intercarrier interference&nbsp; $\rm (ICI)$,&nbsp;
+ Impulsinterferenzen (ISI) unterdrückt werden.
+
+ suppress intersymbol interference&nbsp; $\rm (ISI)$.&nbsp;
  
{Nennen Sie die jeweilige Anzahl der Abtastwerte für das Kernsymbol $(N)$, das Guard–Intervall $(N_{\rm G})$ und den gesamten Rahmen $(N_{\rm R})$.
+
{State the respective number of samples for the basic symbol &nbsp;$(N)$,&nbsp;  the guard interval &nbsp;$(N_{\rm G})$&nbsp; and the entire frame &nbsp;$(N_{\rm R})$.
 
|type="{}"}
 
|type="{}"}
$N \ = \ $ { 8 }  
+
$N \hspace{0.35cm} = \ $ { 8 }  
 
$N_{\rm G} \ = \ $ { 4 }
 
$N_{\rm G} \ = \ $ { 4 }
 
$N_{\rm R} \ = \ $ { 12 }
 
$N_{\rm R} \ = \ $ { 12 }
  
{Geben Sie unter der Vorraussetzung, dass lediglich der erste Träger mit dem Trägerkoeffizienten $-1$ verwendet wird, die Abtastwerte des Guard&ndash;Intervalls vor der Übertragung über den Kanal an.
+
{Specify the guard interval samples, assuming that only the first carrier  is used with carrier coefficient &nbsp;$-1$.
 
|type="{}"}
 
|type="{}"}
$\text{Re}[d_{-1}] \ = \ $ { -714--0.700 }
+
$\text{Re}\big[d_{-1}\big] \ = \ $ { -714--0.700 }
$\text{Im}[d_{-1}] \ = \ $ { 0.707 1% }
+
$\text{Im}\big[d_{-1}\big] \ = \ $ { 0.707 1% }
$\text{Re}[d_{-2}] \ = \ $ { 0. }
+
$\text{Re}\big[d_{-2}\big] \ = \ $ { 0. }
$\text{Im}[d_{-2}] \ = \ $ { 1 1% }
+
$\text{Im}\big[d_{-2}\big] \ = \ $ { 1 1% }
$\text{Re}[d_{-3}] \ = \ $ { 0.707 1% }
+
$\text{Re}\big[d_{-3}\big] \ = \ $ { 0.707 1% }
$\text{Im}[d_{-3}] \ = \ $ { -714--0.700 }
+
$\text{Im}\big[d_{-3}\big] \ = \ $ { 0.707 1% }
$\text{Re}[d_{-4}] \ = \ $ { 1 1% }
+
$\text{Re}\big[d_{-4}\big] \ = \ $ { 1 1% }
$\text{Im}[d_{-4}] \ = \ $ { 0. }
+
$\text{Im}\big[d_{-4}\big] \ = \ $ { 0. }
  
{Welche Bandbreiteneffizienz $\beta$ ergibt sich inklusive des Guard–Intervalls?
+
{What is the bandwidth efficiency &nbsp;$\beta$&nbsp; including the guard interval?
 
|type="{}"}
 
|type="{}"}
 
$\beta\ = \ $ { 0.667 3% }  
 
$\beta\ = \ $ { 0.667 3% }  
  
{Wie groß ist der damit verbundene SNR–Verlust $10 · \lg \ Δ_ρ$ (in dB) unter der Voraussetzung des Matched–Filter–Ansatzes?
+
{What is the associated SNR loss &nbsp;$10 · \lg \ Δρ$&nbsp; (in dB) assuming the matched filter approach?
 
|type="{}"}
 
|type="{}"}
$10 · \lg \ Δ_ρ \ = \ $ { 1.76 3% } $\ \rm dB$  
+
$10 · \lg \ Δρ \ = \ $ { 1.76 3% } $\ \rm dB$  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.''' Die Kernsymboldauer ist gleich dem Kehrwert des Trägerabstands:
+
'''(1)'''&nbsp;  The basic symbol duration is equal to the reciprocal of the carrier spacing: &nbsp;
$$ T = \frac{1}{f_0} \hspace{0.15cm}\underline {= 250\,\,{\rm \mu s}}.$$
+
:$$ T = {1}/{f_0} \hspace{0.15cm}\underline {= 250\,\,{\rm &micro; s}}.$$
 +
 
 +
 
 +
'''(2)'''&nbsp;  To avoid interference,&nbsp; the duration&nbsp; $T_{\rm G}$&nbsp;  of the guard interval should be at least as long as the maximum channel delay&nbsp; $($here: $τ_2 = 125\ \rm  &micro; s)$:
 +
:$$ T_{\rm G} \hspace{0.15cm}\underline {= 125\,\,{\rm &micro; s}}.$$
 +
 
 +
 
 +
'''(3)'''&nbsp;  Thus,&nbsp; for the frame duration: 
 +
:$$ T_{\rm{R}} = T + T_{\rm G}\hspace{0.15cm}\underline {= 375\,\,{\rm &micro; s}}.$$
 +
 
 +
 
 +
'''(4)'''&nbsp;  <u>Solution 2</u>&nbsp; is correct:
 +
*Only intersymbol interference&nbsp; $\rm (ISI)$&nbsp; can be avoided by a guard gap of suitable length.
 +
*The gap duration&nbsp; $T_{\rm G}$&nbsp; must be chosen so large that the current symbol is not affected by the predecessor symbol.
 +
*In the present example,&nbsp; it must be &nbsp; $T_{\rm G}≥ 125\ \rm  &micro; s$.&nbsp;
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp;    <u>Both solutions</u>&nbsp; are applicable:
 +
*A cyclic prefix of suitable length also suppresses intercarrier interference&nbsp; $\rm (ICI)$.&nbsp; 
 +
*This ensures that a complete and undistorted oscillation occurs for all carriers within the basic symbol duration&nbsp; $T$,&nbsp; even if other carriers are active.
  
'''2.''' Um Interferenzen zu vermeiden, ist die Dauer des Guard–Intervalls mindestens so groß zu wählen wie die maximale Verzögerung (hier: $τ_2 = 125 μs$) des Kanals ⇒ $T_G = 125 μs$.
 
  
'''3.'''  Für die Rahmendauer gilt somit:
 
$$ T_{\rm{R}} = T + T_{\rm{G}}\hspace{0.15cm}\underline {= 375\,\,{\rm \mu s}}.$$
 
  
'''4.''' Durch eine Guardlücke geeigneter Länge können ausschließlich Impulsinterferenzen (ISI) vermieden werden. Die Lückendauer $T_G$ muss dabei so groß gewählt werden, dass das aktuelle Symbol durch das Vorgängersymbol nicht beeinträchtigt wird. Im vorliegenden Beispiel muss $T_G ≥ 125 μs$ sein. Richtig ist der Lösungsvorschlag 2.
+
'''(6)'''&nbsp;  The number of samples within the basic symbol is equal to the number of carriers &nbsp; &rArr; &nbsp; $\underline{N=8}$.  
 +
*Because of&nbsp; $T_{\rm G}= T/2$&nbsp;, &nbsp; $N_{\rm G}\hspace{0.15cm}\underline {= 4}$&nbsp; and thus&nbsp; $N_{\rm R} = N + N_{\rm G}\hspace{0.15cm}\underline {= 12}$&nbsp; holds.
  
'''5.''' Durch ein zyklisches Präfix geeigneter Länge werden zusätzlich auch Intercarrier–Interferenzen (ICI) unterdrückt. Es wird damit sichergestellt, dass für alle Träger innerhalb der Kernsymboldauer T eine vollständige und unverfälschte Schwingung auftritt, auch wenn andere Träger aktiv sind. Das heißt: Beide Lösungsvorschläge sind zutreffend.
 
  
'''6.''' Die Anzahl der Abtastwerte innerhalb des Kernsymbols ist gleich der Anzahl N = 8 der Träger. Wegen $T_G = T/2$ gilt $N_G = 4$ und damit $N_{gesamt} = 12$.
 
  
'''7.''' Die Belegung des ersten Trägers (Frequenz $f_0$) mit dem Koeffizienten –1 führt zu den Abtastwerten
+
'''(7)'''&nbsp;  Assigning the coefficient&nbsp; "-1"&nbsp; to the first carrier&nbsp; $($frequency $f_0)$&nbsp; results in the samples
 +
:$$d_0 = -1, \hspace{0.3cm}d_1 = -0.707 - {\rm j} \cdot 0.707, \hspace{0.3cm}d_2 =  -{\rm j} ,\hspace{0.3cm} d_3 = +0.707 -{\rm j} \cdot 0.707, $$
 +
:$$d_4 = +1, \hspace{0.3cm}d_5 = +0.707 + {\rm j} \cdot 0.707, \hspace{0.3cm}d_6 =  +{\rm j} ,\hspace{0.3cm} d_7 = -0.707 +{\rm j} \cdot 0.707. $$
  
<i>d</i><sub>0</sub> = &ndash;1, <i>d</i><sub>1</sub> = &ndash;0.707 &ndash; j &middot; 0.707, <i>d</i><sub>2</sub> = &ndash;j, <i>d</i><sub>3</sub> = + 0.707 &ndash; j &middot; 0.707,
+
*The cyclic expansion provides the additional samples&nbsp; $d_{-1} = d_7$, &nbsp; $d_{-2} = d_6$, &nbsp; $d_{-3} = d_5$&nbsp; and&nbsp; $d_{-4} = d_4$:
 +
:$$\underline{{\rm Re}[d_{-1}] = -0.707,\hspace{0.3cm}{\rm Im}[d_{-1}] = +0.707,\hspace{0.3cm}{\rm Re}[d_{-2}] = 0,\hspace{0.3cm} {\rm Im}[d_{-2}] = 1},$$
 +
:$$\underline{{\rm Re}[d_{-3}] = +0.707,\hspace{0.3cm}{\rm Im}[d_{-3}] = +0.707,\hspace{0.3cm}{\rm Re}[d_{-4}] = 1,\hspace{0.3cm} {\rm Im}\{d_{-4}] = 0}.$$
  
<i>d</i><sub>4</sub> = + 1, <i>d</i><sub>5</sub> = +0.707 + j &middot; 0.707, <i>d</i><sub>6</sub> = j, <i>d</i><sub>7</sub> = &ndash;0.707 + j &middot; 0.707.
 
  
Die zyklische Erweiterung liefert die zusätzlichen Abtastwerte <i>d</i><sub>&ndash;1</sub> = <i>d</i><sub>7</sub>, <i>d</i><sub>&ndash;2</sub> = <i>d</i><sub>6</sub>, <i>d</i><sub>&ndash;3</sub> = <i>d</i><sub>5</sub> und <i>d</i><sub>&ndash;4</sub> = <i>d</i><sub>4</sub>:
+
'''(8)'''&nbsp;   According to the given equation,&nbsp; the bandwidth efficiency is equal to
 +
:$$\beta = \frac{1}{1 + {T_{\rm{G}}}/{T}} = \frac{1}{1 + ({125\,\,{\rm \mu s}})/({250\,\,{\rm \mu s}})} \hspace{0.15cm}\underline {= 0.667}.$$
  
$$\underline{{\rm Re}\{d_{-1}\} = -0.707,\hspace{0.3cm}{\rm Im}\{d_{-1}\} = +0.707,\hspace{0.3cm}{\rm Re}\{d_{-2}\} = 0,\hspace{0.3cm} {\rm Im}\{d_{-2}\} = 1},$$
 
$$\underline{{\rm Re}\{d_{-3}\} = +0.707,\hspace{0.3cm}{\rm Im}\{d_{-3}\} = +0.707,\hspace{0.3cm}{\rm Re}\{d_{-4}\} = 1,\hspace{0.3cm} {\rm Im}\{d_{-4}\} = 0}.$$
 
  
'''8.'''  Entsprechend der angegebenen Gleichung ist die Bandbreiteneffizienz gleich
+
'''(9)'''&nbsp;  The bandwidth efficiency&nbsp; $β&nbsp; = 2/3$&nbsp; results in an SNR loss of
$$\beta = \frac{1}{1 + {T_{\rm{G}}}/{T}} = \frac{1}{1 + ({125\,\,{\rm \mu s}})/({250\,\,{\rm \mu s}})} \hspace{0.15cm}\underline {= 0.667}.$$
+
:$$10 \cdot {\rm{lg}}\hspace{0.04cm}\Delta \rho = 10 \cdot {\rm{lg}}\hspace{0.04cm}(\beta) \hspace{0.15cm}\underline {\approx1.76\,\,{\rm{dB}}}.$$
'''9.''' Die Bandbreiteneffizienz β = 2/3 führt zu einem SNR–Verlust von
 
$$10 \cdot {\rm{lg}}\hspace{0.04cm}\Delta \rho = 10 \cdot {\rm{lg}}\hspace{0.04cm}(\beta) \hspace{0.15cm}\underline {\approx1.76\,\,{\rm{dB}}}.$$
 
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 107: Line 126:
  
  
[[Category:Aufgaben zu Modulationsverfahren|^5.6 Realisierung von OFDM-Systemen^]]
+
[[Category:Modulation Methods: Exercises|^5.6 Realization of OFDM Systems^]]

Latest revision as of 15:52, 31 January 2022

OFDM scheme with cyclic prefix

In this exercise,  we assume an  $\rm OFDM$ system with  $N = 8$  carriers and cyclic prefix.  Let the subcarrier spacing be  $f_0 = 4 \ \rm kHz$   ⇒   basic symbol duration:  $T=1/f_0$.  The diagram shows the principle of the cyclic prefix.

  • Transmission is via a two-way channel,  with both paths delayed.  The channel impulse response is thus with  $τ_1 = \ \rm 50 µs$  and  $τ_2 = 125\ \rm µs$:
$$ h(t) = h_1 \cdot \delta (t- \tau_1) + h_2 \cdot \delta (t- \tau_2).$$
  • However,  the use of such a cyclic prefix decreases the bandwidth efficiency  $($ratio of symbol rate to bandwidth$)$  by a factor of
$$ \beta = \frac{1}{{1 + T_{\rm{G}} /T}} $$
and leads also to a reduction of the signal-to-noise ratio by this value  $\beta$  as well.
  • However,  a prerequisite for the validity of the SNR loss given here is that the impulse responses  $g_{\rm S}(t)$  and  $g_{\rm E}(t)$  of the transmit filter  (German:  "Sendefilter"   ⇒   subscript:  "S")  and the receive filter  (German:  "Empfangsfilter"   ⇒   subscript:  "E")  are matched to the symbol duration  $T$  $($matched–filter approach$)$.



Notes:



Questions

1

Specify the basic symbol duration  $T$.

$T \ = \ $

$\ \rm µ s$

2

What should be the minimum length of the guard interval  $T_{\rm G}$? 

$T_{\rm G}\ = \ $

$\ \rm µ s$

3

Determine the resulting frame duration  $T_{\rm R}$.

$T_{\rm R}\ = \ $

$\ \rm µ s$

4

Which statements are correct?  By using a guard gap,  i.e. setting the OFDM signal to zero in the guard interval,  it is possible to

suppress intercarrier interference  $\rm (ICI)$, 
suppress intersymbol interference  $\rm (ISI)$. 

5

Which statements are correct?  By using a cyclic prefix,  i.e. a cyclic extension of the OFDM signal in the guard interval,  it is possible to

suppress intercarrier interference  $\rm (ICI)$, 
suppress intersymbol interference  $\rm (ISI)$. 

6

State the respective number of samples for the basic symbol  $(N)$,  the guard interval  $(N_{\rm G})$  and the entire frame  $(N_{\rm R})$.

$N \hspace{0.35cm} = \ $

$N_{\rm G} \ = \ $

$N_{\rm R} \ = \ $

7

Specify the guard interval samples, assuming that only the first carrier is used with carrier coefficient  $-1$.

$\text{Re}\big[d_{-1}\big] \ = \ $

$\text{Im}\big[d_{-1}\big] \ = \ $

$\text{Re}\big[d_{-2}\big] \ = \ $

$\text{Im}\big[d_{-2}\big] \ = \ $

$\text{Re}\big[d_{-3}\big] \ = \ $

$\text{Im}\big[d_{-3}\big] \ = \ $

$\text{Re}\big[d_{-4}\big] \ = \ $

$\text{Im}\big[d_{-4}\big] \ = \ $

8

What is the bandwidth efficiency  $\beta$  including the guard interval?

$\beta\ = \ $

9

What is the associated SNR loss  $10 · \lg \ Δρ$  (in dB) assuming the matched filter approach?

$10 · \lg \ Δρ \ = \ $

$\ \rm dB$


Solution

(1)  The basic symbol duration is equal to the reciprocal of the carrier spacing:  

$$ T = {1}/{f_0} \hspace{0.15cm}\underline {= 250\,\,{\rm µ s}}.$$


(2)  To avoid interference,  the duration  $T_{\rm G}$  of the guard interval should be at least as long as the maximum channel delay  $($here: $τ_2 = 125\ \rm µ s)$:

$$ T_{\rm G} \hspace{0.15cm}\underline {= 125\,\,{\rm µ s}}.$$


(3)  Thus,  for the frame duration:

$$ T_{\rm{R}} = T + T_{\rm G}\hspace{0.15cm}\underline {= 375\,\,{\rm µ s}}.$$


(4)  Solution 2  is correct:

  • Only intersymbol interference  $\rm (ISI)$  can be avoided by a guard gap of suitable length.
  • The gap duration  $T_{\rm G}$  must be chosen so large that the current symbol is not affected by the predecessor symbol.
  • In the present example,  it must be   $T_{\rm G}≥ 125\ \rm µ s$. 


(5)  Both solutions  are applicable:

  • A cyclic prefix of suitable length also suppresses intercarrier interference  $\rm (ICI)$. 
  • This ensures that a complete and undistorted oscillation occurs for all carriers within the basic symbol duration  $T$,  even if other carriers are active.


(6)  The number of samples within the basic symbol is equal to the number of carriers   ⇒   $\underline{N=8}$.

  • Because of  $T_{\rm G}= T/2$ ,   $N_{\rm G}\hspace{0.15cm}\underline {= 4}$  and thus  $N_{\rm R} = N + N_{\rm G}\hspace{0.15cm}\underline {= 12}$  holds.


(7)  Assigning the coefficient  "-1"  to the first carrier  $($frequency $f_0)$  results in the samples

$$d_0 = -1, \hspace{0.3cm}d_1 = -0.707 - {\rm j} \cdot 0.707, \hspace{0.3cm}d_2 = -{\rm j} ,\hspace{0.3cm} d_3 = +0.707 -{\rm j} \cdot 0.707, $$
$$d_4 = +1, \hspace{0.3cm}d_5 = +0.707 + {\rm j} \cdot 0.707, \hspace{0.3cm}d_6 = +{\rm j} ,\hspace{0.3cm} d_7 = -0.707 +{\rm j} \cdot 0.707. $$
  • The cyclic expansion provides the additional samples  $d_{-1} = d_7$,   $d_{-2} = d_6$,   $d_{-3} = d_5$  and  $d_{-4} = d_4$:
$$\underline{{\rm Re}[d_{-1}] = -0.707,\hspace{0.3cm}{\rm Im}[d_{-1}] = +0.707,\hspace{0.3cm}{\rm Re}[d_{-2}] = 0,\hspace{0.3cm} {\rm Im}[d_{-2}] = 1},$$
$$\underline{{\rm Re}[d_{-3}] = +0.707,\hspace{0.3cm}{\rm Im}[d_{-3}] = +0.707,\hspace{0.3cm}{\rm Re}[d_{-4}] = 1,\hspace{0.3cm} {\rm Im}\{d_{-4}] = 0}.$$


(8)  According to the given equation,  the bandwidth efficiency is equal to

$$\beta = \frac{1}{1 + {T_{\rm{G}}}/{T}} = \frac{1}{1 + ({125\,\,{\rm \mu s}})/({250\,\,{\rm \mu s}})} \hspace{0.15cm}\underline {= 0.667}.$$


(9)  The bandwidth efficiency  $β  = 2/3$  results in an SNR loss of

$$10 \cdot {\rm{lg}}\hspace{0.04cm}\Delta \rho = 10 \cdot {\rm{lg}}\hspace{0.04cm}(\beta) \hspace{0.15cm}\underline {\approx1.76\,\,{\rm{dB}}}.$$