Difference between revisions of "Aufgaben:Exercise 3.10Z: Rayleigh? Or Rice?"

From LNTwww
m (Text replacement - "Category:Aufgaben zu Stochastische Signaltheorie" to "Category:Theory of Stochastic Signals: Exercises")
 
(7 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Weitere Verteilungen
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Further_Distributions
 
}}
 
}}
  
[[File:P_ID149__Sto_Z_3_10.png|right|frame|Beschreibt die vorliegende WDF Rayleigh oder Rice?]]
+
[[File:P_ID149__Sto_Z_3_10.png|right|frame|Does the present PDF describe  "Rayleigh"  or  "Rice"?]]
Die Wahrscheinlichkeitsdichtefunktion der Zufallsgröße  $x$  ist wie folgt gegeben:
+
The probability density function of the random variable  $x$  is given as follows:
 
:$$f_x(x)=\frac{\it x}{\lambda^{2}}\cdot{\rm e}^{-x^{\rm 2}/(\lambda^{\rm 2})}.$$
 
:$$f_x(x)=\frac{\it x}{\lambda^{2}}\cdot{\rm e}^{-x^{\rm 2}/(\lambda^{\rm 2})}.$$
  
Entsprechend gilt für die zugehörige Verteilungsfunktion:
+
Correspondingly,  for the associated distribution function:
 
:$$F_x(r)= {\rm Pr}(x \le r) = 1-{\rm e}^{- r^{\rm 2}/(2 \lambda^{\rm 2})}.$$
 
:$$F_x(r)= {\rm Pr}(x \le r) = 1-{\rm e}^{- r^{\rm 2}/(2 \lambda^{\rm 2})}.$$
  
*Bekannt ist, dass der Wert  $x_0 = 2$  am häufigsten auftritt.  
+
*It is known that the value  $x_0 = 2$  occurs most frequently.  
*Das bedeutet auch, dass die WDF  $f_x(x)$  bei  $x = x_0 $  maximal ist.
+
*This also means that the PDF  $f_x(x)$  is maximum at  $x = x_0 $.
  
  
  
  
 
+
Hints:
 
+
*This exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Further_Distributions|"Further Distributions"]].
 
+
*In particular, reference is made to the sections   [[Theory_of_Stochastic_Signals/Further_Distributions#Rayleigh_PDF|"Rayleigh PDF"]]  and   [[Theory_of_Stochastic_Signals/Further_Distributions#Rice_PDF|"Rice PDF"]] .  
''Hinweise:''
+
*You can check your results with interactive applet  [[Applets:PDF,_CDF_and_Moments_of_Special_Distributions|"PDF, CDF and moments of special distributions"]].
*Die Aufgabe gehört zum  Kapitel  [[Theory_of_Stochastic_Signals/Weitere_Verteilungen|Weitere Verteilungen]].
+
*Consider the following definite integral in the solution:
*Insbesondere wird auf die Seiten   [[Theory_of_Stochastic_Signals/Weitere_Verteilungen#Rayleighverteilung|Rayleighverteilung]]  und   [[Theory_of_Stochastic_Signals/Weitere_Verteilungen#Riceverteilung|Riceverteilung]]  Bezug genommen .
 
 
*Sie können Ihre Ergebnisse mit interaktiven Applet  [[Applets:WDF,_VTF_und_Momente_spezieller_Verteilungen_(Applet)|WDF, VTF und Momente spezieller Verteilungen]]  überprüfen.
 
*Berücksichtigen Sie bei der Lösung das folgende bestimmte Integral:
 
 
:$$\int_{0}^{\infty}x^{\rm 2}\cdot {\rm e}^{ -x^{\rm 2}/\rm 2}  \, {\rm d}x=\sqrt{{\pi}/{\rm 2}}.$$
 
:$$\int_{0}^{\infty}x^{\rm 2}\cdot {\rm e}^{ -x^{\rm 2}/\rm 2}  \, {\rm d}x=\sqrt{{\pi}/{\rm 2}}.$$
  
Line 30: Line 26:
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{ Welche der folgenden Aussagen treffen zu?
+
{ Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
- Es handelt sich um eine riceverteilte Zufallsgr&ouml;&szlig;e.
+
- It is a rice-distributed random variable.
+ Es handelt sich um eine rayleighverteilte Zufallsgr&ouml;&szlig;e.
+
+ It is a rayleigh distributed random variable.
- Das Zentralmoment 3. Ordnung  &nbsp; &rArr; &nbsp; $\mu_3$&nbsp; ist Null.
+
- The 3rd order central moment &nbsp; &rArr; &nbsp; $\mu_3$&nbsp; is zero.
- Die Kurtosis hat den Wert&nbsp; $K_x = 3$.
+
- The kurtosis has the value&nbsp; $K_x = 3$.
  
  
{Welchen Zahlenwert hat hier der Verteilungsparameter&nbsp; $\lambda$?
+
{What is the numerical value of the distribution parameter&nbsp; $\lambda$?
 
|type="{}"}
 
|type="{}"}
 
$\lambda \ = \ $ { 2 3% }
 
$\lambda \ = \ $ { 2 3% }
  
  
{Wie gro&szlig; ist die Wahrscheinlichkeit, dass&nbsp; $x$&nbsp; kleiner als&nbsp; $x_0 = 2$&nbsp; ist?
+
{What is the probability that&nbsp; $x$&nbsp; is less than&nbsp; $x_0 = 2$?
 
|type="{}"}
 
|type="{}"}
${\rm Pr}(x < x_0 ) \ = \ $ { 39.3 3% } $\ \%$
+
${\rm Pr}(x < x_0 ) \ = \ $ { 39.3 3% } $\ \%$
  
  
{Wie gro&szlig; ist der Mittelwert der Zufallsgr&ouml;&szlig;e&nbsp; $x$? Interpretation.
+
{What is the mean value of the random variable&nbsp; $x$?&nbsp; Interpretation.
 
|type="{}"}
 
|type="{}"}
$m_x \ = \ $ { 2.506 3% }
+
$m_x \ = \ $ { 2.506 3% }
  
  
{Mit welcher Wahrscheinlichkeit ist&nbsp; $x$&nbsp; gr&ouml;&szlig;er als sein Mittelwert&nbsp; $m_x$?
+
{With what probability is&nbsp; $x$&nbsp; larger than its mean&nbsp; $m_x$?
 
|type="{}"}
 
|type="{}"}
${\rm Pr}(x > m_x) \ = \ $ { 45.6 3% } $\ \%$
+
${\rm Pr}(x > m_x) \ = \ $ { 45.6 3% } $\ \%$
 
 
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig ist <u>allein der zweite Lösungsvorschlag</u>.
+
'''(1)'''&nbsp; Correct is&nbsp; <u>only the second proposed solution</u>.
*Aufgrund der gegebenen WDF liegt keine Riceverteilung, sondern eine <u>Rayleighverteilung</u> vor.  
+
*Because of the given PDF there is no Rice distribution,&nbsp; but a&nbsp; <u>Rayleigh distribution</u>.  
*Diese ist um den Mittelwert&nbsp; $m_x$&nbsp; unsymmetrisch, so dass&nbsp; $\mu_3 \ne 0$&nbsp; ist.  
+
*This is asymmetric around the mean&nbsp; $m_x$&nbsp; so that&nbsp; $\mu_3 \ne 0$&nbsp;.  
*Nur bei einer gau&szlig;verteilten Zufallsgr&ouml;&szlig;e gilt f&uuml;r die Kurtosis&nbsp; $K = 3$.  
+
*Only in the case of a Gaussian distributed random variable does the kurtosis&nbsp; $K = 3$.  
*Bei der Rayleighverteilung ergibt sich aufgrund ausgepr&auml;gterer WDF&ndash;Ausl&auml;ufer ein gr&ouml;&szlig;erer Wert&nbsp; $(K = 3.245)$, und zwar  unabh&auml;ngig von&nbsp; $\lambda$.  
+
*For the Rayleigh distribution,&nbsp; a larger value&nbsp; $(K = 3.245)$&nbsp; is obtained due to more pronounced PDF emitters,&nbsp; independent of&nbsp; $\lambda$.  
  
  
  
'''(2)'''&nbsp; Die Ableitung der WDF nach&nbsp; $x$&nbsp; liefert:
+
'''(2)'''&nbsp; The derivative of the PDF with respect to&nbsp; $x$&nbsp; yields:
 
:$$\frac{{\rm d} f_x(x)}{{\rm d}  x} = \frac{\rm 1}{\lambda^{\rm 2}}\cdot{\rm e}^{ -{x^{\rm 2}}/({2  \lambda^{\rm 2}})}+\frac{ x}{ \lambda^{\rm 2}}\cdot{\rm e}^{ -{x^{\rm 2}}/({ 2 \lambda^{\rm 2}})}\cdot(-\frac{2 x}{2 \lambda^{\rm 2}}).$$
 
:$$\frac{{\rm d} f_x(x)}{{\rm d}  x} = \frac{\rm 1}{\lambda^{\rm 2}}\cdot{\rm e}^{ -{x^{\rm 2}}/({2  \lambda^{\rm 2}})}+\frac{ x}{ \lambda^{\rm 2}}\cdot{\rm e}^{ -{x^{\rm 2}}/({ 2 \lambda^{\rm 2}})}\cdot(-\frac{2 x}{2 \lambda^{\rm 2}}).$$
 +
*From this follows as the equation of determination for&nbsp; $x_0$&nbsp; (only the positive solution is meaningful):
 +
:$$\frac{1}{\lambda^{\rm 2}}\cdot{\rm e}^{ -{x_{\rm 0}^{\rm 2}}/{(2 \lambda^{\rm 2}})}\cdot(\rm 1-{\it x_{\rm 0}^{\rm 2}}/{\it \lambda^{\rm 2}})=0 \quad \Rightarrow \quad {\it x}_0=\it \lambda.$$
  
*Daraus folgt als Bestimmungsgleichung f&uuml;r&nbsp; $x_0$&nbsp; (nur die positive Lösung ist sinnvoll):
+
*Thus, we obtain for the distribution parameter&nbsp; $\lambda = x_0\hspace{0.15cm}\underline{= 2}$.
:$$\frac{1}{\lambda^{\rm 2}}\cdot{\rm e}^{ -{x_{\rm 0}^{\rm 2}}/{(2 \lambda^{\rm 2}})}\cdot(\rm 1-{\it x_{\rm 0}^{\rm 2}}/{\it \lambda^{\rm 2}})=0 \quad  \Rightarrow  \quad {\it x}_0=\it \lambda.$$
 
  
*Somit erh&auml;lt man f&uuml;r den Verteilungsparameter&nbsp; $\lambda = x_0\hspace{0.15cm}\underline{= 2}$.
 
  
  
 
+
'''(3)'''&nbsp; The probability we are looking for is equal to the cumulative distribution function&nbsp; $\rm (CDF)$&nbsp; at the point&nbsp; $r = x_0 = \lambda$:
'''(3)'''&nbsp; Die gesuchte Wahrscheinlichkeit ist gleich der Verteilungsfunktion an der Stelle&nbsp; $r = x_0 = \lambda$:
 
 
:$${\rm Pr}(x<x_{\rm 0})={\rm Pr}( x \le x_{\rm 0})=
 
:$${\rm Pr}(x<x_{\rm 0})={\rm Pr}( x \le x_{\rm 0})=
 
F_x(x_{\rm 0})=1-{\rm e}^{-{\lambda^{\rm 2}}/({ 2 \lambda^{\rm 2}})}=1-{\rm e}^{-0.5}\hspace{0.15cm}\underline{=\rm 39.3\%}.$$
 
F_x(x_{\rm 0})=1-{\rm e}^{-{\lambda^{\rm 2}}/({ 2 \lambda^{\rm 2}})}=1-{\rm e}^{-0.5}\hspace{0.15cm}\underline{=\rm 39.3\%}.$$
Line 90: Line 84:
  
  
'''(4)'''&nbsp; Der Mittelwert kann beispielsweise nach folgender Gleichung ermittelt werden:
+
'''(4)'''&nbsp; For example,&nbsp; the mean can be calculated using the following equation:
 
:$$m_x=\int_{-\infty}^{+\infty}\hspace{-0.45cm}x\cdot f_x(x)\,{\rm d}x=\int_{\rm 0}^{\infty}\frac{\it x^{\rm 2}}{\it \lambda^{\rm 2}} \cdot \rm e^{-{\it x^{\rm 2}}/({\rm 2\it \lambda^{\rm 2}})}\,{\rm d}\it x = \sqrt{{\rm \pi}/{\rm 2}}\cdot \it \lambda\hspace{0.15cm}\underline{=\rm 2.506}.$$
 
:$$m_x=\int_{-\infty}^{+\infty}\hspace{-0.45cm}x\cdot f_x(x)\,{\rm d}x=\int_{\rm 0}^{\infty}\frac{\it x^{\rm 2}}{\it \lambda^{\rm 2}} \cdot \rm e^{-{\it x^{\rm 2}}/({\rm 2\it \lambda^{\rm 2}})}\,{\rm d}\it x = \sqrt{{\rm \pi}/{\rm 2}}\cdot \it \lambda\hspace{0.15cm}\underline{=\rm 2.506}.$$
  
*Der Mittelwert&nbsp; $m_x$&nbsp; ist nat&uuml;rlich gr&ouml;&szlig;er als&nbsp; $x_0$&nbsp; $(=$ Maximalwert der WDF$)$, da die WDF zwar nach unten, aber nicht nach oben begrenzt ist.
+
*The mean&nbsp; $m_x$&nbsp; is of course larger than&nbsp; $x_0$&nbsp; $(=$ maximum value of the PDF$)$,&nbsp; since the PDF is bounded downward but not upward.
 +
 
  
  
  
'''(5)'''&nbsp; Allgemein gilt f&uuml;r die gesuchte Wahrscheinlichkeit:
+
'''(5)'''&nbsp; In general,&nbsp; for the sought probability:
 
:$${\rm Pr}(x>m_x)=1- F_x(m_x).$$
 
:$${\rm Pr}(x>m_x)=1- F_x(m_x).$$
  
*Mit der angegebenen Verteilungsfunktion und dem Ergebnis der Teilaufgabe&nbsp; '''(4)'''&nbsp; erh&auml;lt man:
+
*With the given CDF and the result of the subtask&nbsp; '''(4)'''&nbsp; we obtain:
 
:$${\rm Pr}(x>m_x)={\rm e}^{-{m_x^{\rm 2}}/({ 2\lambda^{\rm 2})}}={\rm e}^{-\pi/ 4}\hspace{0.15cm}\underline{\approx \rm 45.6\%}.$$
 
:$${\rm Pr}(x>m_x)={\rm e}^{-{m_x^{\rm 2}}/({ 2\lambda^{\rm 2})}}={\rm e}^{-\pi/ 4}\hspace{0.15cm}\underline{\approx \rm 45.6\%}.$$
{{ML-Fuß}}
 
  
  
  
[[Category:Theory of Stochastic Signals: Exercises|^3.7 Weitere Verteilungen^]]
+
[[Category:Theory of Stochastic Signals: Exercises|^3.7 Further Distributions^]]

Latest revision as of 11:59, 3 February 2022

Does the present PDF describe  "Rayleigh"  or  "Rice"?

The probability density function of the random variable  $x$  is given as follows:

$$f_x(x)=\frac{\it x}{\lambda^{2}}\cdot{\rm e}^{-x^{\rm 2}/(\lambda^{\rm 2})}.$$

Correspondingly,  for the associated distribution function:

$$F_x(r)= {\rm Pr}(x \le r) = 1-{\rm e}^{- r^{\rm 2}/(2 \lambda^{\rm 2})}.$$
  • It is known that the value  $x_0 = 2$  occurs most frequently.
  • This also means that the PDF  $f_x(x)$  is maximum at  $x = x_0 $.



Hints:

$$\int_{0}^{\infty}x^{\rm 2}\cdot {\rm e}^{ -x^{\rm 2}/\rm 2} \, {\rm d}x=\sqrt{{\pi}/{\rm 2}}.$$



Questions

1

Which of the following statements are true?

It is a rice-distributed random variable.
It is a rayleigh distributed random variable.
The 3rd order central moment   ⇒   $\mu_3$  is zero.
The kurtosis has the value  $K_x = 3$.

2

What is the numerical value of the distribution parameter  $\lambda$?

$\lambda \ = \ $

3

What is the probability that  $x$  is less than  $x_0 = 2$?

${\rm Pr}(x < x_0 ) \ = \ $

$\ \%$

4

What is the mean value of the random variable  $x$?  Interpretation.

$m_x \ = \ $

5

With what probability is  $x$  larger than its mean  $m_x$?

${\rm Pr}(x > m_x) \ = \ $

$\ \%$


Solution

(1)  Correct is  only the second proposed solution.

  • Because of the given PDF there is no Rice distribution,  but a  Rayleigh distribution.
  • This is asymmetric around the mean  $m_x$  so that  $\mu_3 \ne 0$ .
  • Only in the case of a Gaussian distributed random variable does the kurtosis  $K = 3$.
  • For the Rayleigh distribution,  a larger value  $(K = 3.245)$  is obtained due to more pronounced PDF emitters,  independent of  $\lambda$.


(2)  The derivative of the PDF with respect to  $x$  yields:

$$\frac{{\rm d} f_x(x)}{{\rm d} x} = \frac{\rm 1}{\lambda^{\rm 2}}\cdot{\rm e}^{ -{x^{\rm 2}}/({2 \lambda^{\rm 2}})}+\frac{ x}{ \lambda^{\rm 2}}\cdot{\rm e}^{ -{x^{\rm 2}}/({ 2 \lambda^{\rm 2}})}\cdot(-\frac{2 x}{2 \lambda^{\rm 2}}).$$
  • From this follows as the equation of determination for  $x_0$  (only the positive solution is meaningful):
$$\frac{1}{\lambda^{\rm 2}}\cdot{\rm e}^{ -{x_{\rm 0}^{\rm 2}}/{(2 \lambda^{\rm 2}})}\cdot(\rm 1-{\it x_{\rm 0}^{\rm 2}}/{\it \lambda^{\rm 2}})=0 \quad \Rightarrow \quad {\it x}_0=\it \lambda.$$
  • Thus, we obtain for the distribution parameter  $\lambda = x_0\hspace{0.15cm}\underline{= 2}$.


(3)  The probability we are looking for is equal to the cumulative distribution function  $\rm (CDF)$  at the point  $r = x_0 = \lambda$:

$${\rm Pr}(x<x_{\rm 0})={\rm Pr}( x \le x_{\rm 0})= F_x(x_{\rm 0})=1-{\rm e}^{-{\lambda^{\rm 2}}/({ 2 \lambda^{\rm 2}})}=1-{\rm e}^{-0.5}\hspace{0.15cm}\underline{=\rm 39.3\%}.$$


(4)  For example,  the mean can be calculated using the following equation:

$$m_x=\int_{-\infty}^{+\infty}\hspace{-0.45cm}x\cdot f_x(x)\,{\rm d}x=\int_{\rm 0}^{\infty}\frac{\it x^{\rm 2}}{\it \lambda^{\rm 2}} \cdot \rm e^{-{\it x^{\rm 2}}/({\rm 2\it \lambda^{\rm 2}})}\,{\rm d}\it x = \sqrt{{\rm \pi}/{\rm 2}}\cdot \it \lambda\hspace{0.15cm}\underline{=\rm 2.506}.$$
  • The mean  $m_x$  is of course larger than  $x_0$  $(=$ maximum value of the PDF$)$,  since the PDF is bounded downward but not upward.



(5)  In general,  for the sought probability:

$${\rm Pr}(x>m_x)=1- F_x(m_x).$$
  • With the given CDF and the result of the subtask  (4)  we obtain:
$${\rm Pr}(x>m_x)={\rm e}^{-{m_x^{\rm 2}}/({ 2\lambda^{\rm 2})}}={\rm e}^{-\pi/ 4}\hspace{0.15cm}\underline{\approx \rm 45.6\%}.$$