Difference between revisions of "Aufgaben:Exercise 3.12: Cauchy Distribution"

From LNTwww
 
(3 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID207__Sto_A_3_12.png|right|frame|PDF of a Cauchy distribution]]
+
[[File:P_ID207__Sto_A_3_12.png|right|frame|Cauchy PDF]]
The probability density function of the Cauchy distribution is given as follows:
+
The probability density function  $\rm (PDF)$  of the Cauchy distribution is given as follows:
 
:$$f_x(x)=\frac{\rm 1}{\rm 2 \pi}\cdot \frac{\rm 1}{\rm 1+ (\it x/\rm 2)^{\rm 2}}.$$
 
:$$f_x(x)=\frac{\rm 1}{\rm 2 \pi}\cdot \frac{\rm 1}{\rm 1+ (\it x/\rm 2)^{\rm 2}}.$$
  
 
From the graph you can already see the extremely slow decay of the PDF course.
 
From the graph you can already see the extremely slow decay of the PDF course.
 
 
 
 
  
  
  
 
Hints:  
 
Hints:  
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Further_Distributions|Further Distributions]].
+
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Further_Distributions|"Further Distributions"]].
*In particular, reference is made to the page   [[Theory_of_Stochastic_Signals/Further_Distributions#Cauchy_PDF|Cauchy PDF]] .
+
*In particular, reference is made to the section   [[Theory_of_Stochastic_Signals/Further_Distributions#Cauchy_PDF|"Cauchy PDF"]].
 
   
 
   
  
Line 25: Line 21:
  
 
<quiz display=simple>
 
<quiz display=simple>
{What is the distribution function&nbsp; $F_x(r)$?&nbsp; What is the probability that&nbsp; $x$&nbsp; is smaller than&nbsp; $2$ by a small amount?
+
{What is the cumulative distribution function&nbsp; $\rm (CDF)$&nbsp; $F_x(r)$?&nbsp; What is the probability that&nbsp; $|x|<2$?
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr} (|x| < 2) \ = \ $ { 50 3% } $ \ \%$
 
${\rm Pr} (|x| < 2) \ = \ $ { 50 3% } $ \ \%$
  
  
{What is the probability that&nbsp; $x$&nbsp; is greater in amount than&nbsp; $4$?
+
{What is the probability that&nbsp; $|x|>4$?
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr} (|x| > 4) \ = \ $ { 29.6 3% } $ \ \%$
 
${\rm Pr} (|x| > 4) \ = \ $ { 29.6 3% } $ \ \%$
Line 46: Line 42:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Comparing the given PDF with the general equation in the theory part, we see that the parameter&nbsp; $\lambda= 2$&nbsp; is.  
+
'''(1)'''&nbsp; Comparing the given PDF with the general equation in the theory part,&nbsp; we see that the parameter is&nbsp; $\lambda= 2$.  
 
*From this follows&nbsp; (after integration over the PDF):
 
*From this follows&nbsp; (after integration over the PDF):
 
:$$F_x ( r ) =\frac{1}{2} + \frac{\rm 1}{\rm \pi}\cdot \rm arctan(\it r/\rm 2).$$
 
:$$F_x ( r ) =\frac{1}{2} + \frac{\rm 1}{\rm \pi}\cdot \rm arctan(\it r/\rm 2).$$
Line 54: Line 50:
 
:$$F_x ( r = -2 ) =\frac{1}{2} + \frac{\rm 1}{\rm \pi}\cdot \rm arctan(-1)=\frac{1}{2} - \frac{\rm 1}{\rm \pi} \cdot \frac{\rm \pi}{4 }=0.25.$$
 
:$$F_x ( r = -2 ) =\frac{1}{2} + \frac{\rm 1}{\rm \pi}\cdot \rm arctan(-1)=\frac{1}{2} - \frac{\rm 1}{\rm \pi} \cdot \frac{\rm \pi}{4 }=0.25.$$
  
*The probability we are looking for is given by the difference of.
+
*The probability we are looking for is given by the difference:
 
:$${\rm Pr} (|x| < 2) = 0.75 - 0.25 \hspace{0.15cm}\underline{=50\%}.$$
 
:$${\rm Pr} (|x| < 2) = 0.75 - 0.25 \hspace{0.15cm}\underline{=50\%}.$$
  
  
'''(2)'''&nbsp; According to the result of the subtask&nbsp; '''(1)'''&nbsp; is&nbsp; $F_x ( r = 4 ) = 0.5 + 1/\pi = 0.852$.  
+
'''(2)'''&nbsp; According to the result of the subtask&nbsp; '''(1)'''&nbsp; &rArr; &nbsp; $F_x ( r = 4 ) = 0.5 + 1/\pi = 0.852$.  
*Thus, for the "complementary" probability&nbsp; ${\rm Pr} (x > 4)= 0.148$.  
+
*Thus,&nbsp; for the&nbsp; "complementary"&nbsp; probability:&nbsp; ${\rm Pr} (x > 4)= 0.148$.  
*For symmetry reasons, the probability we are looking for is twice as large:
+
*For symmetry reasons,&nbsp; the probability we are looking for is twice as large:
 
:$${\rm Pr} (|x| >4) \hspace{0.15cm}\underline{ = 29.6\%}.$$
 
:$${\rm Pr} (|x| >4) \hspace{0.15cm}\underline{ = 29.6\%}.$$
  
Line 69: Line 65:
 
\hspace{-0.15cm}  
 
\hspace{-0.15cm}  
 
\frac{\it x^{\rm 2}}{\rm 1+(\it x/\rm 2)^{\rm 2}} \,\,{\rm d}x.$$
 
\frac{\it x^{\rm 2}}{\rm 1+(\it x/\rm 2)^{\rm 2}} \,\,{\rm d}x.$$
*For gro&szlig;e&nbsp; $x$&nbsp; the integrand yields the constant value&nbsp; $4$. Therefore the integral diverges.  
+
*For large&nbsp; $x$&nbsp; the integrand yields the constant value&nbsp; $4$. Therefore the integral diverges.  
*With&nbsp; $\sigma_x \to \infty$&nbsp; however, even Chebyshev's inequality does not provide an evaluable bound.
+
*Chebyshev's inequality does not provide an evaluable bound,&nbsp;  even with&nbsp; $\sigma_x \to \infty$.
*Natural" random variables (physically interpretable) can never be cauchy distributed, otherwise they would have to have infinite power.  
+
*"Natural" random variables&nbsp; (physically interpretable)&nbsp; can never be cauchy distributed,&nbsp; otherwise they would have an infinite power.  
*On the other hand, an "artificial" (or mathematical) random variable (example: the quotient of two zero mean quantities) is not subject to this restriction.
+
*On the other hand,&nbsp; an&nbsp; "artificial"&nbsp; (or mathematical)&nbsp; random variable is not subject to this restriction. &nbsp; Example: '''The quotient of two zero mean quantities'''.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Latest revision as of 13:24, 3 February 2022

Cauchy PDF

The probability density function  $\rm (PDF)$  of the Cauchy distribution is given as follows:

$$f_x(x)=\frac{\rm 1}{\rm 2 \pi}\cdot \frac{\rm 1}{\rm 1+ (\it x/\rm 2)^{\rm 2}}.$$

From the graph you can already see the extremely slow decay of the PDF course.


Hints:



Questions

1

What is the cumulative distribution function  $\rm (CDF)$  $F_x(r)$?  What is the probability that  $|x|<2$?

${\rm Pr} (|x| < 2) \ = \ $

$ \ \%$

2

What is the probability that  $|x|>4$?

${\rm Pr} (|x| > 4) \ = \ $

$ \ \%$

3

Which of the following statements are true for the Cauchy distribution?

The Cauchy distribution has an infinitely large variance.
The Chebyshev inequality makes no sense here.
A random variable that can be measured in nature is never Cauchy distributed.


Solution

(1)  Comparing the given PDF with the general equation in the theory part,  we see that the parameter is  $\lambda= 2$.

  • From this follows  (after integration over the PDF):
$$F_x ( r ) =\frac{1}{2} + \frac{\rm 1}{\rm \pi}\cdot \rm arctan(\it r/\rm 2).$$
  • In particular.
$$F_x ( r = +2 ) =\frac{1}{2} + \frac{\rm 1}{\rm \pi}\cdot \rm arctan(1)=\frac{1}{2} + \frac{\rm 1}{\rm \pi} \cdot \frac{\rm \pi}{4 }=0.75,$$
$$F_x ( r = -2 ) =\frac{1}{2} + \frac{\rm 1}{\rm \pi}\cdot \rm arctan(-1)=\frac{1}{2} - \frac{\rm 1}{\rm \pi} \cdot \frac{\rm \pi}{4 }=0.25.$$
  • The probability we are looking for is given by the difference:
$${\rm Pr} (|x| < 2) = 0.75 - 0.25 \hspace{0.15cm}\underline{=50\%}.$$


(2)  According to the result of the subtask  (1)  ⇒   $F_x ( r = 4 ) = 0.5 + 1/\pi = 0.852$.

  • Thus,  for the  "complementary"  probability:  ${\rm Pr} (x > 4)= 0.148$.
  • For symmetry reasons,  the probability we are looking for is twice as large:
$${\rm Pr} (|x| >4) \hspace{0.15cm}\underline{ = 29.6\%}.$$


(3)  All proposed solutions are true:

  • For the variance of the Cauchy distribution holds namely:
$$\sigma_x^{\rm 2}=\frac{1}{2\pi}\int_{-\infty}^{+\infty} \hspace{-0.15cm} \frac{\it x^{\rm 2}}{\rm 1+(\it x/\rm 2)^{\rm 2}} \,\,{\rm d}x.$$
  • For large  $x$  the integrand yields the constant value  $4$. Therefore the integral diverges.
  • Chebyshev's inequality does not provide an evaluable bound,  even with  $\sigma_x \to \infty$.
  • "Natural" random variables  (physically interpretable)  can never be cauchy distributed,  otherwise they would have an infinite power.
  • On the other hand,  an  "artificial"  (or mathematical)  random variable is not subject to this restriction.   Example: The quotient of two zero mean quantities.