Difference between revisions of "Aufgaben:Exercise 1.1: Basic Transmission Pulses"

From LNTwww
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Systemkomponenten eines Basisbandübertragungssystems
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/System_Components_of_a_Baseband_Transmission_System
 
}}
 
}}
  
  
[[File:P_ID1256__Dig_A_1_1.png|right|frame|Betrachtete Sendegrundimpulse]]
+
[[File:P_ID1256__Dig_A_1_1.png|right|frame|Considered basic transmission pulses]]
Wir untersuchen in dieser Aufgabe die zwei in der Grafik dargestellten Sendesignale  $s_{\rm R}(t)$  und  $s_{\rm C}(t)$  mit Rechteck– bzw.  $\cos^2$–Sendegrundimpuls. Insbesondere sollen für die jeweiligen Impulse  $g_s(t)$  folgende Kenngrößen berechnet werden:
+
In this exercise, we examine the two transmitted signals  $s_{\rm R}(t)$  and  $s_{\rm C}(t)$  with square-wave and  $\cos^2$ basic transmission pulse, respectively, shown in the diagram. In particular, the following characteristics are to be calculated for the respective pulses  $g_s(t)$:   
*die äquivalente Impulsdauer von  $g_s(t)$:
+
*the equivalent pulse duration of  $g_s(t)$:
 
:$$\Delta t_{\rm S} =  \frac {\int ^{+\infty} _{-\infty} \hspace{0.15cm} g_s(t)\,{\rm
 
:$$\Delta t_{\rm S} =  \frac {\int ^{+\infty} _{-\infty} \hspace{0.15cm} g_s(t)\,{\rm
 
  d}t}{{\rm Max} \hspace{0.05cm}[g_s(t)]} \hspace{0.05cm},$$
 
  d}t}{{\rm Max} \hspace{0.05cm}[g_s(t)]} \hspace{0.05cm},$$
*die Energie des Sendegrundimpulses  $g_s(t)$:
+
*the energy of the basic transmission pulse  $g_s(t)$:
 
:$$E_g =  \int^{+\infty} _{-\infty} g_s^2(t)\,{\rm
 
:$$E_g =  \int^{+\infty} _{-\infty} g_s^2(t)\,{\rm
 
  d}t \hspace{0.05cm},$$
 
  d}t \hspace{0.05cm},$$
*die Leistung des Sendesignals  $s(t)$:
+
*the power of the transmitted signal  $s(t)$:
 
:$$P_{\rm S} =  \lim_{T_{\rm M} \to \infty} \frac{1}{+T_{\rm M}} \cdot \int^{+T_{\rm M}/2} _{-T_{\rm M}/2} s^2(t)\,{\rm
 
:$$P_{\rm S} =  \lim_{T_{\rm M} \to \infty} \frac{1}{+T_{\rm M}} \cdot \int^{+T_{\rm M}/2} _{-T_{\rm M}/2} s^2(t)\,{\rm
 
  d}t \hspace{0.05cm}.$$
 
  d}t \hspace{0.05cm}.$$
  
  
Gehen Sie bei Ihren Berechnungen stets davon aus, dass die beiden möglichen Amplitudenkoeffizienten gleichwahrscheinlich sind und dass der Abstand zwischen benachbarten Symbolen  $T = 1 \ \rm  µ s$  beträgt. Dies entspricht einer Bitrate von  $R = 1 \ \rm Mbit/s$.  
+
Always assume in your calculations that the two possible amplitude coefficients are equally likely and that the distance between adjacent symbols is  $T = 1 \ \rm  µ s$.  This corresponds to a bit rate of  $R = 1 \ \rm Mbit/s$.  
  
*Der (positive) Maximalwert des Sendesignals ist in beiden Fällen gleich
+
*The (positive) maximum value of the transmitted signal is the same in both cases
 
:$$s_0 =  \sqrt{0.5\, {\rm W}}  \hspace{0.05cm}.$$
 
:$$s_0 =  \sqrt{0.5\, {\rm W}}  \hspace{0.05cm}.$$
*Unter der Annahme, dass der Sender mit einem Widerstand von  $50\ \rm  Ω$  abgeschlossen ist, entspricht dies dem folgenden Spannungswert:
+
*Assuming that the transmitter is terminated with a  $50\ \rm  Ω$  resistor, this corresponds to the following voltage value:
 
:$$s_0 =  \sqrt{0.5\, {\rm W}}  \hspace{0.05cm}.$$
 
:$$s_0 =  \sqrt{0.5\, {\rm W}}  \hspace{0.05cm}.$$
  
Line 29: Line 29:
  
  
''Hinweise:''  
+
''Notes:''  
*Die Aufgabe gehört zum  Kapitel  [[Digital_Signal_Transmission/Systemkomponenten_eines_Basisbandübertragungssystems|Systemkomponenten eines Basisbandübertragungssystems]].
+
*The exercise belongs to the chapter  [[Digital_Signal_Transmission/System_Components_of_a_Baseband_Transmission_System|System Components of a Baseband Transmission System]].
*Bezug genommen wird insbesondere auf den Abschnitt  [[Digital_Signal_Transmission/Systemkomponenten_eines_Basisbandübertragungssystems#Kenngr.C3.B6.C3.9Fen_des_digitalen_Senders|Kenngrößen des digitalen Senders]].
+
*Reference is made in particular to the section  [[Digital_Signal_Transmission/System_Components_of_a_Baseband_Transmission_System#Characteristics_of_the_digital_transmitter|Characteristics of the digital transmitter]].
 
   
 
   
*Gegeben ist das folgende unbestimmte Integral:
+
*Given is the following indefinite integral:
 
:$$\int \cos^4(a  x)\,{\rm d}x = \frac{3}{8} \cdot x + \frac{1}{4a} \cdot \sin(2 a  x)+ \frac{1}{32a} \cdot \sin(4 a
 
:$$\int \cos^4(a  x)\,{\rm d}x = \frac{3}{8} \cdot x + \frac{1}{4a} \cdot \sin(2 a  x)+ \frac{1}{32a} \cdot \sin(4 a
 
  x)\hspace{0.05cm}.$$
 
  x)\hspace{0.05cm}.$$
Line 39: Line 39:
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
  
Handelt es sich bei $s_{\rm R}(t)$ und $s_{\rm C}(t)$ um unipolare oder bipolare Signale?
+
Are $s_{\rm R}(t)$ and $s_{\rm C}(t)$ unipolar or bipolar signals?
 
|type="()"}
 
|type="()"}
- $s_{\rm R}(t)$&nbsp; ist ein bipolares Signal und &nbsp;$s_{\rm C}(t)$&nbsp; ein unipolares.
+
- $s_{\rm R}(t)$&nbsp; is a bipolar signal and &nbsp;$s_{\rm C}(t)$&nbsp; is a unipolar signal.
+ $s_{\rm C}(t)$&nbsp; ist ein bipolares Signall und &nbsp;$s_{\rm R}(t)$&nbsp; ein unipolares.
+
+ $s_{\rm C}(t)$&nbsp; is a bipolar signal and &nbsp;$s_{\rm R}(t)$&nbsp; is a unipolar signal.
  
  
{Wie groß ist die äquivalente Impulsdauer &nbsp;$\Delta t_{\rm S}$, normiert auf die Symboldauer &nbsp;$T$?
+
{What is the equivalent pulse duration &nbsp;$\Delta t_{\rm S}$, normalized to the symbol duration &nbsp;$T$?
 
|type="{}"}
 
|type="{}"}
$\text{beim Signal}\ \ s_{\rm R}(t) \text{:} \ \ \Delta t_{\rm S}/T \ = \ $ { 1 3% }  
+
$\text{for the signal}\ \ s_{\rm R}(t) \text{:} \ \ \Delta t_{\rm S}/T \ = \ $ { 1 3% }  
$\text{beim Signal}\ \ s_{\rm C}(t) \text{:} \ \ \Delta t_{\rm S}/T \ = \ $ { 0.5 3% }  
+
$\text{for the signal}\ \ s_{\rm C}(t) \text{:} \ \ \Delta t_{\rm S}/T \ = \ $ { 0.5 3% }  
  
{Wie groß ist die Energie des rechteckförmigen Sendegrundimpulses??
+
{What is the energy of the rectangular basic transmission pulse??
 
|type="{}"}
 
|type="{}"}
 
$E_g \ = \ $ { 0.5 } $\ \cdot 10^{-6}\ \rm Ws$  
 
$E_g \ = \ $ { 0.5 } $\ \cdot 10^{-6}\ \rm Ws$  
  
{Wie groß ist die Leistung des rechteckförmigen Sendesignals &nbsp;$s_{\rm R}(t)$?
+
{What is the power of the rectangular transmitted signal &nbsp;$s_{\rm R}(t)$?
 
|type="{}"}
 
|type="{}"}
 
$P_{\rm S} \ = \ $ { 0.25 3% } $\ \rm W$  
 
$P_{\rm S} \ = \ $ { 0.25 3% } $\ \rm W$  
  
{Wie groß ist die Energie des &nbsp;$\cos^2$&ndash;Sendegrundimpulses?
+
{What is the energy of the &nbsp;$\cos^2$ basic transmission pulse?
 
|type="{}"}
 
|type="{}"}
 
$E_g \ = \ $ { 0.1875 3% } $\ \cdot 10^{-6}\ \rm Ws$  
 
$E_g \ = \ $ { 0.1875 3% } $\ \cdot 10^{-6}\ \rm Ws$  
  
{Wie groß ist die Leistung des Sendesignals &nbsp;$s_{\rm C}(t)$?
+
{What is the power of the transmitted signal &nbsp;$s_{\rm C}(t)$?
 
|type="{}"}
 
|type="{}"}
 
$P_{\rm S} \ = \ $ { 0.1875 3% } $\ \rm W$  
 
$P_{\rm S} \ = \ $ { 0.1875 3% } $\ \rm W$  
Line 72: Line 72:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2</u>:
+
'''(1)'''&nbsp; <u>Solution 2</u> is correct:
*In beiden Fällen kann das Sendesignal in folgender Form dargestellt werden:
+
*In both cases, the transmitted signal can be represented in the following form:
 
:$$s(t) = \sum_{(\nu)} a_\nu \cdot g_s ( t - \nu \cdot T)$$
 
:$$s(t) = \sum_{(\nu)} a_\nu \cdot g_s ( t - \nu \cdot T)$$
*Beim Signal $s_{\rm R}(t)$ sind die Amplitudenkoeffizienten $a_ν$ entweder $0$ oder $1$. Es liegt also ein unipolares Signal vor.  
+
*For the signal $s_{\rm R}(t)$, the amplitude coefficients $a_ν$ are either $0$ or $1$. Thus, a unipolar signal is present.
*Beim bipolaren Signal $s_{\rm R}(t)$ gilt dagegen $a_ν ∈ \{–1, +1\}$.  
+
*In contrast, for the bipolar signal $s_{\rm R}(t)$, $a_ν ∈ \{–1, +1\}$ holds.  
  
  
'''(2)'''&nbsp; Das Signal $s_{\rm R}(t)$ ist NRZ–rechteckförmig.  
+
'''(2)'''&nbsp; The signal $s_{\rm R}(t)$ is NRZ rectangular.
*Dementsprechend sind sowohl die absolute Impulsdauer $T_{\rm S}$ als auch die äquivalente Impulsdauer $\Delta t_{\rm S}$ gleich der Symboldauer $T$:
+
*Accordingly, both the absolute pulse duration $T_{\rm S}$ and the equivalent pulse duration $\Delta t_{\rm S}$ are equal to the symbol duration $T$:
 
:$$T_{\rm S} / T = 1\hspace{0.05cm},\hspace{0.3cm}\Delta t_{\rm S} / T \hspace{0.1cm}\underline{ = 1 }\hspace{0.05cm}.$$
 
:$$T_{\rm S} / T = 1\hspace{0.05cm},\hspace{0.3cm}\Delta t_{\rm S} / T \hspace{0.1cm}\underline{ = 1 }\hspace{0.05cm}.$$
*Der Sendegrundimpuls für das Signal $s_{\rm C}(t)$ lautet:
+
*The basic transmission pulse for the signal $s_{\rm C}(t)$ is:
 
:$$g_s(t)  =  \left\{ \begin{array}{c} s_0 \cdot \cos^2(\pi \cdot \frac{t}{T})  \\
 
:$$g_s(t)  =  \left\{ \begin{array}{c} s_0 \cdot \cos^2(\pi \cdot \frac{t}{T})  \\
 
  0 \\  \end{array} \right.\quad
 
  0 \\  \end{array} \right.\quad
Line 92: Line 92:
 
{\rm sonst} \hspace{0.05cm}.  \\
 
{\rm sonst} \hspace{0.05cm}.  \\
 
\end{array}$$
 
\end{array}$$
*Aus der Grafik auf der Angabenseite erkennt man, dass für den $\cos^2$–Impuls folgende Werte gelten:
+
*From the diagram on the information section, we can see that the following values apply to the $\cos^2$ pulse:
 
:$$T_{\rm S} / T = 1\hspace{0.05cm},\hspace{0.3cm}\Delta t_{\rm S} / T \hspace{0.1cm}\underline{ = 0.5} \hspace{0.05cm}.$$
 
:$$T_{\rm S} / T = 1\hspace{0.05cm},\hspace{0.3cm}\Delta t_{\rm S} / T \hspace{0.1cm}\underline{ = 0.5} \hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp; Für die Energie des Rechteckimpulses gilt:
+
'''(3)'''&nbsp; For the energy of the rectangular pulse holds:
 
:$$E_g =  \int^{+\infty} _{-\infty} g_s^2(t)\,{\rm
 
:$$E_g =  \int^{+\infty} _{-\infty} g_s^2(t)\,{\rm
 
  d}t = s_0^2 \cdot T = 0.5\, {\rm W} \cdot 1\, {\rm &micro; s} \hspace{0.1cm}\underline{= 0.5 \cdot 10^{-6}\, {\rm
 
  d}t = s_0^2 \cdot T = 0.5\, {\rm W} \cdot 1\, {\rm &micro; s} \hspace{0.1cm}\underline{= 0.5 \cdot 10^{-6}\, {\rm
Line 102: Line 102:
  
  
'''(4)'''&nbsp; Bei einem bipolaren Rechtecksignal würde gelten:
+
'''(4)'''&nbsp; For a bipolar square wave signal, the following would apply:
 
:$$s_{\rm R}^2(t)= s_0^2 = {\rm const.} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_s =  s_0^2 \cdot
 
:$$s_{\rm R}^2(t)= s_0^2 = {\rm const.} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_s =  s_0^2 \cdot
 
  \lim_{T_{\rm M} \to \infty} \frac{1}{T_{\rm M}} \cdot \int ^{T_{\rm M}/2} _{-T_{\rm M}/2} \,{\rm
 
  \lim_{T_{\rm M} \to \infty} \frac{1}{T_{\rm M}} \cdot \int ^{T_{\rm M}/2} _{-T_{\rm M}/2} \,{\rm
 
  d}t = s_0^2 \hspace{0.05cm}.$$
 
  d}t = s_0^2 \hspace{0.05cm}.$$
*Da das Signal $s_{\rm R}(t)$ hier jedoch unipolar ist, gilt in der Hälfte der Zeit $s_{\rm R}(t)= 0$. Somit ergibt sich:
+
*However, since the signal $s_{\rm R}(t)$ is unipolar here, in half the time $s_{\rm R}(t)= 0$. Thus, we get:
 
:$$P_{\rm S} = {1}/{2} \cdot s_0^2 \hspace{0.1cm}\underline{= 0.25 \,{\rm
 
:$$P_{\rm S} = {1}/{2} \cdot s_0^2 \hspace{0.1cm}\underline{= 0.25 \,{\rm
 
  W}}  \hspace{0.05cm}.$$
 
  W}}  \hspace{0.05cm}.$$
  
  
'''(5)'''&nbsp; Für die Energie des $\cos^2$–Impulses gilt:
+
'''(5)'''&nbsp; For the energy of the $\cos^2$ pulse holds:
 
:$$E_g =  \int^{+\infty} _{-\infty} g_s^2(t)\,{\rm
 
:$$E_g =  \int^{+\infty} _{-\infty} g_s^2(t)\,{\rm
 
  d}t = 2 \cdot s_0^2 \cdot \int^{T/2} _{0} \cos^4(\pi \cdot {t}/{T})\,{\rm
 
  d}t = 2 \cdot s_0^2 \cdot \int^{T/2} _{0} \cos^4(\pi \cdot {t}/{T})\,{\rm
 
  d}t \hspace{0.05cm}.$$
 
  d}t \hspace{0.05cm}.$$
*Hierbei ist die unter Punkt '''(3)''' hergeleitete Formel und die Symmetrie von $g_s(t)$ um den Zeitpunkt $t = 0$ berücksichtigt.  
+
*Here, the formula derived in point '''(3)''' and the symmetry of $g_s(t)$ about time $t = 0$ are considered.
*Das Integral ist bei der Aufgabenbeschreibung angegeben, wobei $a = π/T$ zu setzen ist:
+
*The integral is given in the task description, where $a = π/T$ is to be set:
 
:$$E_g =    2  \cdot s_0^2 \cdot \left [ \frac{3}{8} \cdot t + \frac{T}{4\pi} \cdot \sin(2 \pi \frac{t}{T})+ \frac{T}{32\pi} \cdot
 
:$$E_g =    2  \cdot s_0^2 \cdot \left [ \frac{3}{8} \cdot t + \frac{T}{4\pi} \cdot \sin(2 \pi \frac{t}{T})+ \frac{T}{32\pi} \cdot
 
  \sin(4 \pi \frac{t}{T})\right ]_{0}^{T/2}\hspace{0.05cm}.$$
 
  \sin(4 \pi \frac{t}{T})\right ]_{0}^{T/2}\hspace{0.05cm}.$$
*Die untere Grenze $t = 0$ liefert stets das Ergebnis $0$. Hinsichtlich der oberen Grenze ergibt sich nur für den ersten Term ein von $0$ verschiedenes Ergebnis. Also:
+
*The lower bound $t = 0$ always yields the result $0$. With respect to the upper bound, only the first term yields a result different from $0$. Thus:
 
:$$E_g =    2  \cdot s_0^2 \cdot  \frac{3}{8} \cdot \frac{T}{2} = \frac{3}{8} \cdot 5 \cdot 10^{-7}\, {\rm
 
:$$E_g =    2  \cdot s_0^2 \cdot  \frac{3}{8} \cdot \frac{T}{2} = \frac{3}{8} \cdot 5 \cdot 10^{-7}\, {\rm
 
  Ws} \hspace{0.1cm}\underline{ = 0.1875 \cdot 10^{-6}\, {\rm
 
  Ws} \hspace{0.1cm}\underline{ = 0.1875 \cdot 10^{-6}\, {\rm
Line 125: Line 125:
  
  
'''(6)'''&nbsp; Beim bipolaren Signal $s_{\rm C}(t)$ gilt folgender Zusammenhang:
+
'''(6)'''&nbsp; The following relationship holds for the bipolar signal $s_{\rm C}(t)$:
 
:$$P_{\rm  S} = \frac{ E_g}{T} = \frac{ 1.875 \cdot 10^{-7}\, {\rm
 
:$$P_{\rm  S} = \frac{ E_g}{T} = \frac{ 1.875 \cdot 10^{-7}\, {\rm
 
  Ws}}{10^{-6}\, {\rm  s}}\hspace{0.1cm}\underline{ = 0.1875 \,{\rm  W}}  \hspace{0.05cm}.$$
 
  Ws}}{10^{-6}\, {\rm  s}}\hspace{0.1cm}\underline{ = 0.1875 \,{\rm  W}}  \hspace{0.05cm}.$$

Revision as of 17:14, 10 February 2022


Considered basic transmission pulses

In this exercise, we examine the two transmitted signals  $s_{\rm R}(t)$  and  $s_{\rm C}(t)$  with square-wave and  $\cos^2$ basic transmission pulse, respectively, shown in the diagram. In particular, the following characteristics are to be calculated for the respective pulses  $g_s(t)$: 

  • the equivalent pulse duration of  $g_s(t)$:
$$\Delta t_{\rm S} = \frac {\int ^{+\infty} _{-\infty} \hspace{0.15cm} g_s(t)\,{\rm d}t}{{\rm Max} \hspace{0.05cm}[g_s(t)]} \hspace{0.05cm},$$
  • the energy of the basic transmission pulse  $g_s(t)$:
$$E_g = \int^{+\infty} _{-\infty} g_s^2(t)\,{\rm d}t \hspace{0.05cm},$$
  • the power of the transmitted signal  $s(t)$:
$$P_{\rm S} = \lim_{T_{\rm M} \to \infty} \frac{1}{+T_{\rm M}} \cdot \int^{+T_{\rm M}/2} _{-T_{\rm M}/2} s^2(t)\,{\rm d}t \hspace{0.05cm}.$$


Always assume in your calculations that the two possible amplitude coefficients are equally likely and that the distance between adjacent symbols is  $T = 1 \ \rm µ s$.  This corresponds to a bit rate of  $R = 1 \ \rm Mbit/s$.

  • The (positive) maximum value of the transmitted signal is the same in both cases
$$s_0 = \sqrt{0.5\, {\rm W}} \hspace{0.05cm}.$$
  • Assuming that the transmitter is terminated with a  $50\ \rm Ω$  resistor, this corresponds to the following voltage value:
$$s_0 = \sqrt{0.5\, {\rm W}} \hspace{0.05cm}.$$




Notes:

  • Given is the following indefinite integral:
$$\int \cos^4(a x)\,{\rm d}x = \frac{3}{8} \cdot x + \frac{1}{4a} \cdot \sin(2 a x)+ \frac{1}{32a} \cdot \sin(4 a x)\hspace{0.05cm}.$$


Questions

1

Are $s_{\rm R}(t)$ and $s_{\rm C}(t)$ unipolar or bipolar signals?

$s_{\rm R}(t)$  is a bipolar signal and  $s_{\rm C}(t)$  is a unipolar signal.
$s_{\rm C}(t)$  is a bipolar signal and  $s_{\rm R}(t)$  is a unipolar signal.

2

What is the equivalent pulse duration  $\Delta t_{\rm S}$, normalized to the symbol duration  $T$?

$\text{for the signal}\ \ s_{\rm R}(t) \text{:} \ \ \Delta t_{\rm S}/T \ = \ $

$\text{for the signal}\ \ s_{\rm C}(t) \text{:} \ \ \Delta t_{\rm S}/T \ = \ $

3

What is the energy of the rectangular basic transmission pulse??

$E_g \ = \ $

$\ \cdot 10^{-6}\ \rm Ws$

4

What is the power of the rectangular transmitted signal  $s_{\rm R}(t)$?

$P_{\rm S} \ = \ $

$\ \rm W$

5

What is the energy of the  $\cos^2$ basic transmission pulse?

$E_g \ = \ $

$\ \cdot 10^{-6}\ \rm Ws$

6

What is the power of the transmitted signal  $s_{\rm C}(t)$?

$P_{\rm S} \ = \ $

$\ \rm W$


Solution

(1)  Solution 2 is correct:

  • In both cases, the transmitted signal can be represented in the following form:
$$s(t) = \sum_{(\nu)} a_\nu \cdot g_s ( t - \nu \cdot T)$$
  • For the signal $s_{\rm R}(t)$, the amplitude coefficients $a_ν$ are either $0$ or $1$. Thus, a unipolar signal is present.
  • In contrast, for the bipolar signal $s_{\rm R}(t)$, $a_ν ∈ \{–1, +1\}$ holds.


(2)  The signal $s_{\rm R}(t)$ is NRZ rectangular.

  • Accordingly, both the absolute pulse duration $T_{\rm S}$ and the equivalent pulse duration $\Delta t_{\rm S}$ are equal to the symbol duration $T$:
$$T_{\rm S} / T = 1\hspace{0.05cm},\hspace{0.3cm}\Delta t_{\rm S} / T \hspace{0.1cm}\underline{ = 1 }\hspace{0.05cm}.$$
  • The basic transmission pulse for the signal $s_{\rm C}(t)$ is:
$$g_s(t) = \left\{ \begin{array}{c} s_0 \cdot \cos^2(\pi \cdot \frac{t}{T}) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{f\ddot{u}r}} \\ \\ \end{array}\begin{array}{*{20}c} -T/2 \le t \le +T/2 \hspace{0.05cm}, \\ {\rm sonst} \hspace{0.05cm}. \\ \end{array}$$
  • From the diagram on the information section, we can see that the following values apply to the $\cos^2$ pulse:
$$T_{\rm S} / T = 1\hspace{0.05cm},\hspace{0.3cm}\Delta t_{\rm S} / T \hspace{0.1cm}\underline{ = 0.5} \hspace{0.05cm}.$$


(3)  For the energy of the rectangular pulse holds:

$$E_g = \int^{+\infty} _{-\infty} g_s^2(t)\,{\rm d}t = s_0^2 \cdot T = 0.5\, {\rm W} \cdot 1\, {\rm µ s} \hspace{0.1cm}\underline{= 0.5 \cdot 10^{-6}\, {\rm Ws}}\hspace{0.05cm}.$$


(4)  For a bipolar square wave signal, the following would apply:

$$s_{\rm R}^2(t)= s_0^2 = {\rm const.} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_s = s_0^2 \cdot \lim_{T_{\rm M} \to \infty} \frac{1}{T_{\rm M}} \cdot \int ^{T_{\rm M}/2} _{-T_{\rm M}/2} \,{\rm d}t = s_0^2 \hspace{0.05cm}.$$
  • However, since the signal $s_{\rm R}(t)$ is unipolar here, in half the time $s_{\rm R}(t)= 0$. Thus, we get:
$$P_{\rm S} = {1}/{2} \cdot s_0^2 \hspace{0.1cm}\underline{= 0.25 \,{\rm W}} \hspace{0.05cm}.$$


(5)  For the energy of the $\cos^2$ pulse holds:

$$E_g = \int^{+\infty} _{-\infty} g_s^2(t)\,{\rm d}t = 2 \cdot s_0^2 \cdot \int^{T/2} _{0} \cos^4(\pi \cdot {t}/{T})\,{\rm d}t \hspace{0.05cm}.$$
  • Here, the formula derived in point (3) and the symmetry of $g_s(t)$ about time $t = 0$ are considered.
  • The integral is given in the task description, where $a = π/T$ is to be set:
$$E_g = 2 \cdot s_0^2 \cdot \left [ \frac{3}{8} \cdot t + \frac{T}{4\pi} \cdot \sin(2 \pi \frac{t}{T})+ \frac{T}{32\pi} \cdot \sin(4 \pi \frac{t}{T})\right ]_{0}^{T/2}\hspace{0.05cm}.$$
  • The lower bound $t = 0$ always yields the result $0$. With respect to the upper bound, only the first term yields a result different from $0$. Thus:
$$E_g = 2 \cdot s_0^2 \cdot \frac{3}{8} \cdot \frac{T}{2} = \frac{3}{8} \cdot 5 \cdot 10^{-7}\, {\rm Ws} \hspace{0.1cm}\underline{ = 0.1875 \cdot 10^{-6}\, {\rm Ws}}\hspace{0.05cm}.$$


(6)  The following relationship holds for the bipolar signal $s_{\rm C}(t)$:

$$P_{\rm S} = \frac{ E_g}{T} = \frac{ 1.875 \cdot 10^{-7}\, {\rm Ws}}{10^{-6}\, {\rm s}}\hspace{0.1cm}\underline{ = 0.1875 \,{\rm W}} \hspace{0.05cm}.$$