Difference between revisions of "Aufgaben:Exercise 2.10: SSB-AM with Channel Distortions"
Line 24: | Line 24: | ||
:$$ H_{\rm K}(f = 46\ {\rm kHz}) = 0.968,\hspace{0.3cm}H_{\rm K}(f = 48\ {\rm kHz}) = 1.000,\hspace{0.3cm} | :$$ H_{\rm K}(f = 46\ {\rm kHz}) = 0.968,\hspace{0.3cm}H_{\rm K}(f = 48\ {\rm kHz}) = 1.000,\hspace{0.3cm} | ||
H_{\rm K}(f = 52\ {\rm kHz}) = 0.882,\hspace{0.3cm}H_{\rm K}(f = 54\ {\rm kHz}) = 0.754\hspace{0.05cm}.$$ | H_{\rm K}(f = 52\ {\rm kHz}) = 0.882,\hspace{0.3cm}H_{\rm K}(f = 54\ {\rm kHz}) = 0.754\hspace{0.05cm}.$$ | ||
− | In each case, write the sink signal in the form | + | In each case, write the sink signal in the form |
:$$v(t) = A_2 \cdot \cos(2 \pi f_2 \cdot (t - \tau_2)) + A_4 \cdot \cos(2 \pi f_4 \cdot (t - \tau_4))\hspace{0.05cm}.$$ | :$$v(t) = A_2 \cdot \cos(2 \pi f_2 \cdot (t - \tau_2)) + A_4 \cdot \cos(2 \pi f_4 \cdot (t - \tau_4))\hspace{0.05cm}.$$ | ||
All calculations are to be carried out for both a perfect phase synchronization $(Δϕ_{\rm T} = 0)$ as well as for a phase offset of $Δϕ_{\rm T} = 30^\circ$. This is present, for example, if the transmit-side carrier signal is cosine-shaped and the receiver-side carrier is: | All calculations are to be carried out for both a perfect phase synchronization $(Δϕ_{\rm T} = 0)$ as well as for a phase offset of $Δϕ_{\rm T} = 30^\circ$. This is present, for example, if the transmit-side carrier signal is cosine-shaped and the receiver-side carrier is: | ||
Line 32: | Line 32: | ||
− | + | Hints: | |
− | + | *This exercise belongs to the chapter [[Modulation_Methods/Single-Sideband_Modulation|Single-Sideband Modulation]]. | |
− | + | *Reference will also be made to the chapter [[Modulation_Methods/Synchronous_Demodulation|Synchronous Demodulation]]. | |
− | |||
− | |||
− | *This exercise belongs to the chapter [[Modulation_Methods/Single-Sideband_Modulation|Single-Sideband Modulation]]. | ||
− | *Reference will also be made to the chapter nbsp; [[Modulation_Methods/Synchronous_Demodulation|Synchronous Demodulation]]. | ||
Line 47: | Line 43: | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Calculate the amplitudes for <u> | + | {Calculate the amplitudes for <u>double-sideband AM</u> and <u>perfect synchronization</u> $(Δϕ_{\rm T} = 0)$. |
|type="{}"} | |type="{}"} | ||
$A_2 \ = \ $ { 1.882 3% } $\ \rm V$ | $A_2 \ = \ $ { 1.882 3% } $\ \rm V$ | ||
$A_4 \ = \ $ { 1.722 3% } $\ \rm V$ | $A_4 \ = \ $ { 1.722 3% } $\ \rm V$ | ||
− | {What are the values for $A_2$ and $τ_2$ for <u> | + | {What are the values for $A_2$ and $τ_2$ for <u>double-sideband AM</u> and a <u>phase offset</u> $(Δϕ_{\rm T} = 30^\circ)$? |
|type="{}"} | |type="{}"} | ||
$A_2 \ = \ $ { 1.63 3% } $\ \rm V$ | $A_2 \ = \ $ { 1.63 3% } $\ \rm V$ | ||
$τ_2 \hspace{0.25cm} = \ $ { 0. } $\ \rm µ s$ | $τ_2 \hspace{0.25cm} = \ $ { 0. } $\ \rm µ s$ | ||
− | {Calculate the amplitudes $A_2$ and $A_4$ for <u> | + | {Calculate the amplitudes $A_2$ and $A_4$ for <u>upper-sideband AM</u> and <u>perfect synchronization</u> $(Δϕ_{\rm T} = 0)$. |
|type="{}"} | |type="{}"} | ||
$A_2 \ = \ $ { 1.764 3% } $\ \rm V$ | $A_2 \ = \ $ { 1.764 3% } $\ \rm V$ | ||
$A_4 \ = \ $ { 1.508 3% } $\ \rm V$ | $A_4 \ = \ $ { 1.508 3% } $\ \rm V$ | ||
− | {Give the signal amplitudes for <u> | + | {Give the signal amplitudes for <u>lower-sideband AM</u> and <u>perfect synchronization</u> $(Δϕ_{\rm T} = 0)$. |
|type="{}"} | |type="{}"} | ||
$A_2 \ = \ $ { 2 3% } $\ \rm V$ | $A_2 \ = \ $ { 2 3% } $\ \rm V$ | ||
$A_4 \ = \ $ { 1.936 3% } $\ \rm V$ | $A_4 \ = \ $ { 1.936 3% } $\ \rm V$ | ||
− | {In contrast, what are the signal parameters for <u> | + | {In contrast, what are the signal parameters for <u>lower-sideband AM</u> and a <u>phase offset</u> $(Δϕ_{\rm T} = 30^\circ)$? |
|type="{}"} | |type="{}"} | ||
$A_2 \ = \ $ { 2 3% } $\ \rm V$ | $A_2 \ = \ $ { 2 3% } $\ \rm V$ | ||
Line 74: | Line 70: | ||
$τ_4 \hspace{0.25cm} = \ $ { 20.8 3% } $\ \rm µ s$ | $τ_4 \hspace{0.25cm} = \ $ { 20.8 3% } $\ \rm µ s$ | ||
− | {Which of these statements are true given your results? Here, "channel distortions" should always be understood as attenuation distortions. | + | {Which of these statements are true given your results? Here, "channel distortions" should always be understood as a kind of attenuation distortions. |
|type="[]"} | |type="[]"} | ||
− | + In | + | + In "double-sideband AM", each channel distortion leads to attenuation distortions. |
− | - In | + | - In "single-sideband AM", each channel distortion leads to phase distortions. |
− | - In | + | - In "double-sideband AM", a phase offset leads to attenuation distortions. |
− | + In | + | + In "single-sideband AM", a phase offset leads to phase distortions. |
Revision as of 16:52, 16 February 2022
Let us consider the transmission of the source signal
- $$q(t) = 2\,{\rm V} \cdot \cos(2 \pi f_2 t) + 2\,{\rm V} \cdot \cos(2 \pi f_4 t)$$
over a Gaussian bandpass channel with center frequency $f_{\rm M} = 48 \ \rm kHz$.
- This is different from the carrier frequency $f_{\rm T} = 50 \ \rm kHz$ used in modulation.
- The frequencies $f_2$ and $f_4$ stand for $f = 2 \ \rm kHz$ und $f = 4 \ \rm kHz$, resp.
We will now investigate the following modulation methods with respect to the spectrum $S_+(f)$ of the analytical signal as shown in the upper graph:
- DSB–AM $($all four spectral lines at $46 \ \rm kHz$, $48 \ \rm kHz$, $52 \ \rm kHz$ and $54 \ \rm kHz)$ ⇒ "double-sideband" ,
- USB–AM $($only blue spectral lines at $52 \ \rm kHz$ and $54 \ \rm kHz)$ ⇒ "upper-sideband",
- LSB–AM $($only green spectral lines at $46 \ \rm kHz$ and $48 \ \rm kHz)$ ⇒ "lower-sideband".
In each case, a synchronous demodulator is used to first convert the receiver-side carrier signal
- $$ z_{\rm E} (t) = \left\{ \begin{array}{c} 2 \cdot z(t) \\ 4 \cdot z(t) \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}c} {\rm DSB} \hspace{0.05cm}, \\ {\rm USB, LSB} \hspace{0.05cm} \\ \end{array}$$
by multiplication and then completely suppresses the components by twice the carrier frequency. With an ideal channel $H_{\rm K}(f) = 1$ , $v(t) = q(t)$ would hold in all cases.
The Gaussian channel considered here is given by the following auxiliary values:
- $$ H_{\rm K}(f = 46\ {\rm kHz}) = 0.968,\hspace{0.3cm}H_{\rm K}(f = 48\ {\rm kHz}) = 1.000,\hspace{0.3cm} H_{\rm K}(f = 52\ {\rm kHz}) = 0.882,\hspace{0.3cm}H_{\rm K}(f = 54\ {\rm kHz}) = 0.754\hspace{0.05cm}.$$
In each case, write the sink signal in the form
- $$v(t) = A_2 \cdot \cos(2 \pi f_2 \cdot (t - \tau_2)) + A_4 \cdot \cos(2 \pi f_4 \cdot (t - \tau_4))\hspace{0.05cm}.$$
All calculations are to be carried out for both a perfect phase synchronization $(Δϕ_{\rm T} = 0)$ as well as for a phase offset of $Δϕ_{\rm T} = 30^\circ$. This is present, for example, if the transmit-side carrier signal is cosine-shaped and the receiver-side carrier is:
- $$ z_{\rm E} (t) = A_{\rm E} \cdot \cos(\omega_{\rm T} \cdot t - 30^\circ) . $$
Hints:
- This exercise belongs to the chapter Single-Sideband Modulation.
- Reference will also be made to the chapter Synchronous Demodulation.
Questions
Solution
- $$\alpha_2 = {1}/{2} \cdot \left[ H_{\rm K}(f = 48\,{\rm kHz}) + H_{\rm K}(f = 52\,{\rm kHz})\right] = 0.981,$$
- $$\alpha_4 = {1}{2} \cdot \left[ H_{\rm K}(f = 46\,{\rm kHz}) + H_{\rm K}(f = 54\,{\rm kHz})\right] = 0.861\hspace{0.05cm}.$$
- Thus, we get the amplitudes $A_2\hspace{0.15cm}\underline{ = 1.882 \ \rm V}$ and $A_4\hspace{0.15cm}\underline{ = 1.722 \ \rm V}$.
(2) For DSB, a phase offset between the carrier frequencies at the transmitter and the receiver, respectively, leads to one and the same attenuation for all frequencies:
- $$A_2 = \cos (30^\circ) \cdot 1.882\,{\rm V} \hspace{0.15cm}\underline {= 1.630\,{\rm V}},$$
- $$A_4 = \cos (30^\circ) \cdot 1.722\,{\rm V} = 1.491\,{\rm V}\hspace{0.05cm}.$$
- The transmit times are $τ_2\hspace{0.15cm}\underline {= 0}$ and $τ_4 = 0$.
(3) For USB–AM, the attenuation factor $α_2$ is only determined by $H_{\rm K}(f = 52\ \rm kHz)$ .
- Since the principal USB amplitude loss by a factor of $2$ is compensated for by a larger carrier amplitude, the following holds:
- $$A_2 = 0.882 \cdot 2\,{\rm V}\hspace{0.15cm}\underline {= 1.764\,{\rm V}},$$
- $$A_4 = 0.754 \cdot 2\,{\rm V}\hspace{0.15cm}\underline {= 1.508\,{\rm V}} \hspace{0.05cm}.$$
(4) Analogous to the solution in subtask (3) , here we obtain:
- $$ A_2 = H_{\rm K}(f = 48\,{\rm kHz}) \cdot 2\,{\rm V}\hspace{0.15cm}\underline {= 2\,{\rm V}},$$
- $$A_4 = H_{\rm K}(f = 46\,{\rm kHz}) \cdot 2\,{\rm V}\hspace{0.15cm}\underline {= 1.936\,{\rm V}} \hspace{0.05cm}.$$
(5) For LSB–AM, the received signal is:
- $$r(t) = 1\,{\rm V} \cdot \cos( \omega_{\rm 48} \cdot t) + 0.968\,{\rm V} \cdot \cos( \omega_{\rm 46} \cdot t)\hspace{0.05cm}.$$
- By multiplication with the receiver-side carrier signal $z_{\rm E}(t) = 4 \cdot \cos( \omega_{\rm 50} \cdot t - \Delta \phi_{\rm T})$ , applying the trigonometric addition theorem gives:
- $$v(t) = r(t) \cdot z_{\rm E}(t) = \hspace{0.15cm}\underline { 2.000\,{\rm V}} \cdot \cos( \omega_{\rm 2} \cdot t - \Delta \phi_{\rm T})+\hspace{0.15cm}\underline { 1.936\,{\rm V}} \cdot \cos( \omega_{\rm 4} \cdot t - \Delta \phi_{\rm T}) + {\rm components \hspace{0.15cm}around\hspace{0.15cm}} 2f_{\rm T}\hspace{0.05cm}$$
- $$ \Rightarrow \hspace{0.3cm} A_2 \hspace{0.15cm}\underline {= 2\,{\rm V}},\hspace{0.5cm} A_4 \hspace{0.15cm}\underline {= 1.936\,{\rm V}}.$$
- Considering the downstream lowpass filter, this can also be written as:
- $$ v(t) = A_2 \cdot \cos( \omega_{\rm 2} \cdot (t - \tau_2))+ A_4 \cdot \cos( \omega_{\rm 4} \cdot (t - \tau_4))\hspace{0.05cm}.$$
- The amplitudes are unchanged compared to subtask (4) . For the transmit times when $Δϕ_{\rm T} = π/6$, we get:
- $$ \tau_2 = \frac {\Delta \phi_{\rm T}}{2 \pi \cdot f_2} = \frac {\pi /6}{2 \pi \cdot 2\,{\rm kHz}} \hspace{0.15cm}\underline {\approx 41.6\,{\rm µ s}},\hspace{0.5cm} \tau_4 = \frac {\Delta \phi_{\rm T}}{2 \pi \cdot f_4}= \frac {\tau_2}{2}\hspace{0.15cm}\underline {\approx 20.8\,{\rm µ s}} \hspace{0.05cm}.$$
(6) The first and last answers are correct:
- Attenuation distortion on the channel exclusively lead to attenuation distortions with respect to $v(t)$, also for SSB.
- Phase distortions are only present for a demodulator with a phase offset in the case of single-sideband modulation.
- For DSB–AM, such a phase offset would not result in any distortions, but only in frequency-independent damping.
- Phase distortions with respect to $v(t)$ can also arise in DSB–AM and SSB–AM, if these already occur on the channel.