Difference between revisions of "Aufgaben:Exercise 3.5Z: Antenna Areas"

From LNTwww
m (Text replacement - "rms value" to "standard deviation")
 
(23 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Gleichverteilte Zufallsgröße
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Uniformly_Distributed_Random_Variables
 
}}
 
}}
  
[[File:P_ID188__Sto_Z_3_5.png|right|Zwei Antennengebiete]]
+
[[File:P_ID188__Sto_Z_3_5.png|right|frame|Two antenna areas:  $K$  and  $G$]]
Wir betrachten zunächst - wie im oberen Bild skizziert - eine Empfangsantenne, die ein kreisförmiges Gebiet $K$ versorgt. Es wird hierbei vorausgesetzt, dass die Antenne „$K$” alle unter unterschiedlichen Winkeln $\alpha$ einfallenden Signale gleich gut detektieren kann:  
+
We first consider – as sketched in the image above – a receiving antenna serving a circular area  $K$.  It is assumed that this antenna can detect all signals incident at different angles  $\alpha$  equally well:  
*Entsprechend der Skizze bezieht sich der Winkel $\alpha$ auf die $x$–Achse.  
+
*According to the sketch,  the angle  $\alpha$  refers to the  $x$–axis.  
*Der Wert $\alpha = 0$ bedeutet demnach, dass sich das Signal in Richtung der negativen $x$–Achse auf die Antenne zu bewegt.
+
*The value  $\alpha = 0$  therefore means that the signal is moving towards the antenna in the direction of the negative  $x$–axis.
  
  
Weiter setzen wir voraus:
+
Further we assume:
*Der Wertebereich des Einfallswinkels $\alpha$ betr&auml;gt mit dieser Definition $-\pi < \alpha \le +\pi$.
+
*The range of values of the angle of incidence&nbsp; $\alpha$&nbsp; with this definition&nbsp; $-\pi < \alpha \le +\pi$.
*Es halten sich sehr viele Teilnehmer im Versorgungsgebiet auf, deren Positionen $(x, y)$) &bdquo;statistisch&rdquo; &uuml;ber das Gebiet $K$ verteilt sind.
+
*There are very many users in the coverage area whose positions&nbsp; $(x, y)$&nbsp; are&nbsp; "statistically distributed"&nbsp; over the area&nbsp; $K$.&nbsp;
  
  
Ab der Teilaufgabe (5) gehen wir von dem unten skizzierten Versorgungsgebiet $G$ aus. Wegen eines Hindernisses muss nun die $x$&ndash;Koordinate aller Teilnehmer stets gr&ouml;&szlig;er als $-R/2$ sein. Im nun nicht mehr kreisf&ouml;rmigen Versorgungsgebiet $G$ seien die Teilnehmer wieder &bdquo;statistisch verteilt&rdquo;.
+
From subtask&nbsp; '''(5)'''&nbsp; we assume the coverage area&nbsp; $G$&nbsp; outlined below.  
 +
*Because of an obstacle,&nbsp; the&nbsp; $x$&ndash;coordinate of all participants must now be greater&ouml;&space;than&nbsp; $-R/2$.&nbsp;
 +
*Also in the coverage area&nbsp; $G$&nbsp; the subscribers would again be&nbsp; "statistically distributed".
  
  
''Hinweise:''
 
*Die Aufgabe gehört zum  Kapitel [[Stochastische_Signaltheorie/Gleichverteilte_Zufallsgröße|Gleichverteilte Zufallsgröße]].
 
*Sollte die Eingabe des Zahlenwertes &bdquo;0&rdquo; erforderlich sein, so geben Sie bitte &bdquo;0.&rdquo; ein.
 
  
  
===Fragebogen===
+
 
 +
Hint:
 +
*The exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Uniformly_Distributed_Random_Variables|Uniformly Distributed Random Variables]].
 +
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie lautet die WDF $f_\alpha(\alpha)$? Welcher Wert ergibt sich f&uuml;r $\alpha = 0$?
+
{What is the PDF&nbsp; $f_\alpha(\alpha)$&nbsp; for the area&nbsp; $K$?&nbsp; What PDF&ndash;value results for&nbsp; $\alpha = 0$?
 
|type="{}"}
 
|type="{}"}
$\text{Gebiet }K\text{:}\hspace{0.4cm} f_\alpha(\alpha = 0) \ = $ { 0.159 3% }
+
$f_\alpha(\alpha = 0) \ = \ $ { 0.159 3% }
  
  
{Welche der beiden Aussagen ist richtig? Beachten Sie insbesondere auch den unsymmetrischen Definitionsbereich von $-\pi < \alpha \le +\pi$.
+
{Which of the two statements is correct?&nbsp; Note in particular also the asymmetric definition range of&nbsp; $-\pi < \alpha \le +\pi$.
|type="[]"}
+
|type="()"}
+ Der Erwartungswert ist ${\rm E}[alpha] = 0$.
+
+ The expected value is&nbsp; ${\rm E}[\alpha] = 0$.
- Der Erwartungswert ${\rm E}[alpha] \ne 0$.
+
- The expected value is&nbsp; ${\rm E}[\alpha] \ne 0$.
  
  
{Welcher Wert ergibt sich f&uuml;r die Streuung der Zufallsgr&ouml;&szlig;e $\alpha$?
+
{What value results for the standard deviation of the random variable&nbsp; $\alpha$&nbsp; in the area&nbsp; $K$?
 
|type="{}"}
 
|type="{}"}
$\text{Gebiet }K\text{:}\hspace{0.4cm} \sigma_\alpha \ = $ { 1.814 3% }
+
$\sigma_\alpha \ = \ $ { 1.814 3% }
  
  
{Wie gro&szlig; ist die Wahrscheinlichkeit, dass die Antenne einen Teilnehmer unter einem Winkel zwischen $-45^\circ$ und $+45^\circ$ ortet?
+
{What is the probability that in area&nbsp; $K$&nbsp; the antenna locates a user at an angle between&nbsp; $\pm45^\circ$ ?
 
|type="{}"}
 
|type="{}"}
$\text{Gebiet }K\text{:}\hspace{0.4cm}{\rm Pr}(–π/4 ≤ α ≤ +π/4) \ =$ { 0.25 3% }
+
${\rm Pr}(/4 ≤ α ≤ +π/4) \ = \ $ { 25 3% } $\ \%$
  
  
{Nun betrachten wir das untere Versorgungsgebiet $G$. In welchem Bereich $-alpha_0 \le \alpha \le +alpha_0$ hat diese WDF $f_\alpha(\alpha)$ einen konstanten Wert?
+
{Now let's consider the coverage area&nbsp; $G$.&nbsp; In which area&nbsp; $-\alpha_0 \le \alpha \le +\alpha_0$&nbsp; does the PDF&nbsp; $f_\alpha(\alpha)$&nbsp; have a constant value?
 
|type="{}"}
 
|type="{}"}
$\text{Gebiet }G\text{:}\hspace{0.4cm}\alpha_0 \ =$ = { 2.094 3% } $ \ \rm rad$
+
$\alpha_0 \ = \ $ { 2.094 3% } $ \ \rm rad$
 +
$\alpha_0 \ = \ $ { 120 3% } $ \ \rm degrees$
  
  
{Welche Aussagen sind hinsichtlich $f_\alpha(\alpha) im Bereich $-|\alpha| >+alpha_0$ g&uuml;ltig?
+
{What statements are now valid with respect to&nbsp; $f_\alpha(\alpha)$&nbsp; in the range&nbsp; $|\alpha| > \alpha_0$&nbsp; ?
 
|type="[]"}
 
|type="[]"}
- Die WDF hat &bdquo;außen&rdquo; den gleichen Verlauf wie &bdquo;innen&rdquo;.
+
- The PDF has the same course&nbsp; "outside"&nbsp; as&nbsp; "inside".
- Die WDF ist hier $0$.
+
- The PDF is&nbsp; "outside"&nbsp; identically zero.
+ Die WDF f&auml;llt in diesem Bereich zu den R&auml;ndern hin ab.
+
+ The PDF decreases towards the edges in this area.
- Die WDF steigt in diesem Bereich zu den R&auml;ndern hin an.
+
- The PDF increases towards the edges in this area.
  
  
{Berechnen Sie f&uuml;r das Gebiet $G$ die Wahrscheinlichkeit, dass die Antenne einen Teilnehmer unter einem Winkel zwischen $\pm 45^\circ$ ortet. Interpretation.
+
{Calculate for the area&nbsp; $G$&nbsp; the probability that the antenna locates a user at an angle between&nbsp; $\pm 45^\circ$&nbsp;.
 
|type="{}"}
 
|type="{}"}
$\text{Gebiet }G\text{:}\hspace{0.4cm} {\rm Pr}(–π/4 ≤ α ≤ +π/4) \ =$ { 0.311 3% }
+
${\rm Pr}(/4 ≤ α ≤ +π/4) \ = \ $ { 31.1 3% } $\ \%$
  
  
{Wie gro&szlig; ist nun der WDF&ndash;Wert an der Stelle $\alpha = 0$?
+
{What is now the PDF value at the position&nbsp; $\alpha = 0$?
 
|type="{}"}
 
|type="{}"}
$\text{Gebiet }G\text{:}\hspace{0.4cm} f_\alpha(\alpha\ =\ 0)$ { 0.198 3% }
+
$f_\alpha(\alpha = 0) \ = \ $ { 0.198 3% }
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:<b>1.</b>&nbsp;&nbsp;Es liegt eine Gleichverteilung vor und es gilt f&uuml;r die WDF im Bereich &ndash;&pi; < &alpha; &#8804; +&pi;:
+
'''(1)'''&nbsp; There is a uniform distribution and it is true for the PDF in the range&nbsp; $-\pi < \alpha \le +\pi$: &nbsp;
 
:$$f_\alpha(\alpha)={\rm 1}/({\rm 2\cdot \pi}).$$
 
:$$f_\alpha(\alpha)={\rm 1}/({\rm 2\cdot \pi}).$$
 +
* For&nbsp; $\alpha = 0$&nbsp; this gives &ndash; as for all allowed values also &ndash; the PDF value :$$f_\alpha(\alpha =0) \hspace{0.15cm}\underline{=0.159}.$$
  
:Bei <i>&alpha;</i> = 0 ergibt sich somit &ndash; wie bei allen zul&auml;ssigen Werten auch &ndash; der WDF-Wert <u>0.159</u>.
 
  
:<b>2.</b>&nbsp;&nbsp;Es gilt <u>E[<i>&alpha;</i>] = 0</u>. Es hat keinen Einfluss, dass <i>&alpha;</i> = +&pi; erlaubt, aber <i>&alpha;</i> = &ndash;&pi; ausgeschlossen ist.
 
  
:<b>3.</b>&nbsp;&nbsp;F&uuml;r die Varianz gilt:
+
'''(2)'''&nbsp; It holds&nbsp; ${\rm E}\big[\alpha\big] = 0$ &nbsp; &rArr; &nbsp; <u>Answer 1</u>.  
:$$\sigma_{\alpha}^{\rm 2}=\int_{-\rm\pi}^{\rm\pi}\hspace{-0.1cm}\it\alpha^{\rm 2}\cdot \it f_{\alpha}(\alpha)\,\,{\rm d} \alpha=\frac{\rm 1}{\rm 2\cdot\it \pi}\cdot \frac{\alpha^{\rm 3}}{\rm 3}\Bigg|_{\rm -\pi}^{\rm\pi}=\frac{\rm 2\cdot\pi^{3}}{\rm 2\cdot\rm \pi\cdot \rm 3}=\frac{\rm \pi^2}{\rm 3} = \rm 3.29.$$
+
*It has no effect that&nbsp; $\alpha = +\pi$&nbsp; is allowed, but&nbsp; $\alpha = -\pi$&nbsp; is excluded.
  
:Damit ist die Streuung <i>&sigma;<sub>&alpha;</sub></i> <u>= 1.814</u>.
 
  
:<b>4.</b>&nbsp;&nbsp;Da der vorgegebene Kreisausschnitt genau ein Viertel der gesamten Kreisfl&auml;che ausmacht, ist die <u>gesuchte Wahrscheinlichkeit 25%</u>.
 
[[File:P_ID189__Sto_Z_3_5_e.png|right|]]
 
  
:<b>5.</b>&nbsp;&nbsp;Aus einfachen geometrischen &Uuml;berlegungen (rechtwinkliges Dreieck, in der nebenstehenden Skizze blau markiert) erh&auml;lt man die Bestimmungsgleichung f&uuml;r den Winkel <i>&alpha;</i><sub>0</sub>:
+
'''(3)'''&nbsp; For the variance of the angle of incidence&nbsp; $\alpha$&nbsp; holds:
:$$\rm cos(\pi-\it\alpha_{\rm 0}) = \frac{\it R/\rm 2}{\it R}=\frac{\rm 1}{\rm 2}\hspace{0.5cm}\Rightarrow\hspace{0.5cm}\rm\pi-\it\alpha_{\rm 0}=\frac{\rm\pi}{\rm 3} \hspace{0.2cm}(\rm 60^{\circ}).$$
+
:$$\sigma_{\alpha}^{\rm 2}=\int_{-\rm\pi}^{\rm\pi}\hspace{-0.1cm}\it\alpha^{\rm 2}\cdot \it f_{\alpha}(\alpha)\,\,{\rm d} \alpha=\frac{\rm 1}{\rm 2\cdot\it \pi}\cdot \frac{\alpha^{\rm 3}}{\rm 3}\Bigg|_{\rm -\pi}^{\rm\pi}=\frac{\rm 2\cdot\pi^{3}}{\rm 2\cdot\rm \pi\cdot \rm 3}=\frac{\rm \pi^2}{\rm 3} = \rm 3. 29. \hspace{0.5cm}\Rightarrow \hspace{0.5cm}\sigma_{\alpha}\hspace{0.15cm}\underline{=1.814}.$$
  
:Daraus folgt <i>&alpha;</i><sub>0</sub> = 2&pi;/3 <u>= 2.094</u> (dies entspricht 120&deg;).
 
  
:<br><br><br><br><br>
+
'''(4)'''&nbsp; Since the given section of the circle is exactly one quarter of the total circle area, the probability we are looking for is
:<b>6.</b>&nbsp;&nbsp;Richtig ist der <u>Lösungsvorschlag 3</u>: Die Wahrscheinlichkeitsdichtefunktion (WDF) <i>f<sub>&alpha;</sub></i>(<i>&alpha;</i>) ist f&uuml;r einen gegebenen Winkel <i>&alpha;</i>  direkt proportional zum Abstand <i>A</i> zwischen der Antenne und der Begrenzungslinie. Bei <i>&alpha;</i> = &plusmn;2&pi;/3 (120&deg;) gilt <i>A</i> = <i>R</i>, bei <i>&alpha;</i> = &plusmn;&pi; (180&deg;) dagegen <i>A</i> = <i>R</i>/2. Dazwischen wird der Abstand sukzessive kleiner. Das hei&szlig;t: die WDF f&auml;llt zu den R&auml;ndern hin ab. Der Abfall erfolgt hierbei nach folgendem Verlauf:
+
:$${\rm Pr}(-π/4 ≤ α ≤ +π/4)\hspace{0.15cm}\underline{=25\%}.$$
 +
 
 +
 
 +
[[File:EN_Sto_Z_3_5_e.png|right|frame|The area $G$]]
 +
'''(5)'''&nbsp; From simple geometrical &uml;considerations&nbsp; (right-angled triangle, marked dark blue in the adjacent sketch)&nbsp; one obtains the equation of determination for the angle&nbsp; $\alpha_0$:
 +
:$$\cos(\pi-\alpha_{\rm 0}) = \frac{R/ 2}{R}={\rm 1}/{\rm 2}\hspace{0.5cm}\Rightarrow\hspace{0.5cm}\rm\pi-\it\alpha_{\rm 0}=\frac{\rm\pi}{\rm 3} \hspace{0.2cm}\rm( 60^{\circ}).$$
 +
*It follows&nbsp; $\alpha_0 = \pi/3\hspace{0.15cm}\underline{=2.094}.$
 +
*This corresponds&nbsp; $\alpha_0 \hspace{0.15cm}\underline{=120^\circ}$.
 +
 
 +
 
 +
 
 +
'''(6)'''&nbsp; Correct is&nbsp; <u>the suggested solution 3</u>:  
 +
*The PDF&nbsp; $f_\alpha(\alpha)$&nbsp; is f&nbsp; for a given angle&nbsp; $\alpha$&nbsp; directly proportional to the distance&nbsp; $A$&nbsp; between the antenna and the boundary line.  
 +
*For&nbsp; $\alpha = \pm 2\pi/3 = \pm 120^\circ$&nbsp; against&nbsp; $A = R$,&nbsp; for&nbsp; $\alpha \pm \pi = \pm 180^\circ$&nbsp; against&nbsp; $A = R/2$.
 +
*In between the distance becomes successively smaller.&nbsp; This means: &nbsp; The PDF decreases towards the boundary.  
 +
*The decrease follows the following course:
 
:$$\it A=\frac{\it R/\rm 2}{\rm cos(\rm \pi-\it\alpha)}.$$
 
:$$\it A=\frac{\it R/\rm 2}{\rm cos(\rm \pi-\it\alpha)}.$$
  
:<b>7.</b>&nbsp;&nbsp;Die Fl&auml;che <i>G</i> kann aus der Summe des 240&deg;-Sektors und des durch die Eckpunkte UVW gebildeten Dreiecks berechnet werden:
 
:$$G=\frac{\rm 2}{\rm 3}\cdot \it R^{\rm 2}\cdot{\rm \pi} + \frac{\it R}{\rm 2}\cdot \it R\cdot \rm sin(\rm 60^{\circ}) = \it R^{\rm 2}\cdot \rm\pi\cdot (\frac{\rm 2}{\rm 3}+\frac{\rm \sqrt{3}}{\rm 4\cdot\pi}).$$
 
  
:Die gesuchte Wahrscheinlichkeit ergibt sich als das Verh&auml;ltnis der Fl&auml;chen <i>F</i> und <i>G</i> (siehe Bild):
 
:$$\rm Pr(\rm -\pi/4\le\it\alpha\le+\rm\pi/4)=\frac{\it F}{\it G}=\frac{1/4}{2/3+{\rm sin(60^{\circ})}/({\rm 2\pi})}=\frac{\rm 0.25}{\rm 0.805}\hspace{0.15cm}\underline{=\rm 0.311}.$$
 
  
:Obwohl sich gegen&uuml;ber Punkt 4. an der Fl&auml;che <i>F</i> nichts ge&auml;ndert hat, wird die Wahrscheinlichkeit nun aufgrund des kleineren Gebietes <i>G</i> um den Faktor 1/0.805 &asymp; 1.242 gr&ouml;&szlig;er.
+
'''(7)'''&nbsp; The area $G$ can be calculated from the sum of the&nbsp; $240^\circ$&ndash;sector and the triangle formed by the vertices&nbsp; $\rm UVW$&nbsp; :
 +
:$$G=\frac{\rm 2}{\rm 3}\cdot \it R^{\rm 2}\cdot{\rm \pi} \ {\rm +} \ \frac{\it R}{\rm 2}\cdot \it R\cdot \rm sin(\rm 60^{\circ}) = \it R^{\rm 2}\cdot \rm\pi\cdot (\frac{\rm 2}{\rm 3}+\frac{\rm \sqrt{3}}{\rm 4\cdot\pi}).$$
 +
 
 +
*The probability we are looking for is given by the ratio of the areas&nbsp; $F$&nbsp; and&nbsp; $G$&nbsp; (see sketch):
 +
:$$\rm Pr(\rm -\pi/4\le\it\alpha\le+\rm\pi/4)=\frac{\it F}{\it G}=\frac{1/4}{2/3+{\rm sin(60^{\circ})}/({\rm 2\pi})}=\frac{\rm 0.25}{\rm 0.805}\hspace{0.15cm}\underline{=\rm 31.1\%}.$$
 +
 
 +
*Although nothing has changed from point&nbsp; '''(4)'''&nbsp; at the area&nbsp; $F$&nbsp; the probability now becomes larger by a factor&nbsp; $1/0.805 &asymp; 1.242$&nbsp; due to the smaller area&nbsp; $G$&nbsp;.
 +
 
 +
 
  
:<b>8.</b>&nbsp;&nbsp;Da die WDF-Fl&auml;che insgesamt konstant gleich 1 ist und die WDF an den R&auml;ndern abnimmt, muss sie im Bereich |<i>&alpha;</i>| < 2&pi;/3 einen gr&ouml;&szlig;eren Wert als unter a) berechnet besitzen. Mit den Ergebnissen aus a) und g) gilt:
+
'''(8)'''&nbsp; Since the overall PDF area is constantly equal&nbsp; $1$&nbsp; and the PDF decreases at the boundaries, it must have a larger value in the range&nbsp; $|\alpha| < 2\pi/3$&nbsp; than in&nbsp; '''(1)'''.
 +
* With the results from&nbsp; '''(1)'''&nbsp; and&nbsp; '''(7)'''&nbsp; holds:
 
:$$f_{\alpha}(\alpha = 0)=\frac{1/(2\pi)}{2/3+{\rm sin(\rm 60^{\circ})}/({\rm 2\pi})} = \frac{\rm 1}{{\rm 4\cdot\pi}/{\rm 3}+\rm sin(60^{\circ})}\hspace{0.15cm}\underline{\approx \rm 0.198}.$$
 
:$$f_{\alpha}(\alpha = 0)=\frac{1/(2\pi)}{2/3+{\rm sin(\rm 60^{\circ})}/({\rm 2\pi})} = \frac{\rm 1}{{\rm 4\cdot\pi}/{\rm 3}+\rm sin(60^{\circ})}\hspace{0.15cm}\underline{\approx \rm 0.198}.$$
  
:Wie die unter Punkt 7. berechnete Wahrscheinlichkeit nimmt auch gleichzeitig der WDF-Wert im Bereich |&alpha;| < 2&pi;/3 um den Faktor 1.242 zu, wenn das Versorgungsgebiet kleiner wird.
+
*Like the probability in&nbsp; '''(7)'''&nbsp; also simultaneously the PDF value in the range&nbsp; $|\alpha| < 2\pi/3$&nbsp; increases by a factor&nbsp; $1.242$&nbsp; as the coverage area becomes smaller.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 114: Line 135:
  
  
[[Category:Aufgaben zu Stochastische Signaltheorie|^3.4 Gleichverteilte Zufallsgröße^]]
+
[[Category:Theory of Stochastic Signals: Exercises|^3.4 Uniformly Distributed Random Variable^]]

Latest revision as of 12:11, 17 February 2022

Two antenna areas:  $K$  and  $G$

We first consider – as sketched in the image above – a receiving antenna serving a circular area  $K$.  It is assumed that this antenna can detect all signals incident at different angles  $\alpha$  equally well:

  • According to the sketch,  the angle  $\alpha$  refers to the  $x$–axis.
  • The value  $\alpha = 0$  therefore means that the signal is moving towards the antenna in the direction of the negative  $x$–axis.


Further we assume:

  • The range of values of the angle of incidence  $\alpha$  with this definition  $-\pi < \alpha \le +\pi$.
  • There are very many users in the coverage area whose positions  $(x, y)$  are  "statistically distributed"  over the area  $K$. 


From subtask  (5)  we assume the coverage area  $G$  outlined below.

  • Because of an obstacle,  the  $x$–coordinate of all participants must now be greaterö&space;than  $-R/2$. 
  • Also in the coverage area  $G$  the subscribers would again be  "statistically distributed".



Hint:


Questions

1

What is the PDF  $f_\alpha(\alpha)$  for the area  $K$?  What PDF–value results for  $\alpha = 0$?

$f_\alpha(\alpha = 0) \ = \ $

2

Which of the two statements is correct?  Note in particular also the asymmetric definition range of  $-\pi < \alpha \le +\pi$.

The expected value is  ${\rm E}[\alpha] = 0$.
The expected value is  ${\rm E}[\alpha] \ne 0$.

3

What value results for the standard deviation of the random variable  $\alpha$  in the area  $K$?

$\sigma_\alpha \ = \ $

4

What is the probability that in area  $K$  the antenna locates a user at an angle between  $\pm45^\circ$ ?

${\rm Pr}(-π/4 ≤ α ≤ +π/4) \ = \ $

$\ \%$

5

Now let's consider the coverage area  $G$.  In which area  $-\alpha_0 \le \alpha \le +\alpha_0$  does the PDF  $f_\alpha(\alpha)$  have a constant value?

$\alpha_0 \ = \ $

$ \ \rm rad$
$\alpha_0 \ = \ $

$ \ \rm degrees$

6

What statements are now valid with respect to  $f_\alpha(\alpha)$  in the range  $|\alpha| > \alpha_0$  ?

The PDF has the same course  "outside"  as  "inside".
The PDF is  "outside"  identically zero.
The PDF decreases towards the edges in this area.
The PDF increases towards the edges in this area.

7

Calculate for the area  $G$  the probability that the antenna locates a user at an angle between  $\pm 45^\circ$ .

${\rm Pr}(-π/4 ≤ α ≤ +π/4) \ = \ $

$\ \%$

8

What is now the PDF value at the position  $\alpha = 0$?

$f_\alpha(\alpha = 0) \ = \ $


Solution

(1)  There is a uniform distribution and it is true for the PDF in the range  $-\pi < \alpha \le +\pi$:  

$$f_\alpha(\alpha)={\rm 1}/({\rm 2\cdot \pi}).$$
  • For  $\alpha = 0$  this gives – as for all allowed values also – the PDF value :$$f_\alpha(\alpha =0) \hspace{0.15cm}\underline{=0.159}.$$


(2)  It holds  ${\rm E}\big[\alpha\big] = 0$   ⇒   Answer 1.

  • It has no effect that  $\alpha = +\pi$  is allowed, but  $\alpha = -\pi$  is excluded.


(3)  For the variance of the angle of incidence  $\alpha$  holds:

$$\sigma_{\alpha}^{\rm 2}=\int_{-\rm\pi}^{\rm\pi}\hspace{-0.1cm}\it\alpha^{\rm 2}\cdot \it f_{\alpha}(\alpha)\,\,{\rm d} \alpha=\frac{\rm 1}{\rm 2\cdot\it \pi}\cdot \frac{\alpha^{\rm 3}}{\rm 3}\Bigg|_{\rm -\pi}^{\rm\pi}=\frac{\rm 2\cdot\pi^{3}}{\rm 2\cdot\rm \pi\cdot \rm 3}=\frac{\rm \pi^2}{\rm 3} = \rm 3. 29. \hspace{0.5cm}\Rightarrow \hspace{0.5cm}\sigma_{\alpha}\hspace{0.15cm}\underline{=1.814}.$$


(4)  Since the given section of the circle is exactly one quarter of the total circle area, the probability we are looking for is

$${\rm Pr}(-π/4 ≤ α ≤ +π/4)\hspace{0.15cm}\underline{=25\%}.$$


The area $G$

(5)  From simple geometrical ¨considerations  (right-angled triangle, marked dark blue in the adjacent sketch)  one obtains the equation of determination for the angle  $\alpha_0$:

$$\cos(\pi-\alpha_{\rm 0}) = \frac{R/ 2}{R}={\rm 1}/{\rm 2}\hspace{0.5cm}\Rightarrow\hspace{0.5cm}\rm\pi-\it\alpha_{\rm 0}=\frac{\rm\pi}{\rm 3} \hspace{0.2cm}\rm( 60^{\circ}).$$
  • It follows  $\alpha_0 = \pi/3\hspace{0.15cm}\underline{=2.094}.$
  • This corresponds  $\alpha_0 \hspace{0.15cm}\underline{=120^\circ}$.


(6)  Correct is  the suggested solution 3:

  • The PDF  $f_\alpha(\alpha)$  is f  for a given angle  $\alpha$  directly proportional to the distance  $A$  between the antenna and the boundary line.
  • For  $\alpha = \pm 2\pi/3 = \pm 120^\circ$  against  $A = R$,  for  $\alpha \pm \pi = \pm 180^\circ$  against  $A = R/2$.
  • In between the distance becomes successively smaller.  This means:   The PDF decreases towards the boundary.
  • The decrease follows the following course:
$$\it A=\frac{\it R/\rm 2}{\rm cos(\rm \pi-\it\alpha)}.$$


(7)  The area $G$ can be calculated from the sum of the  $240^\circ$–sector and the triangle formed by the vertices  $\rm UVW$  :

$$G=\frac{\rm 2}{\rm 3}\cdot \it R^{\rm 2}\cdot{\rm \pi} \ {\rm +} \ \frac{\it R}{\rm 2}\cdot \it R\cdot \rm sin(\rm 60^{\circ}) = \it R^{\rm 2}\cdot \rm\pi\cdot (\frac{\rm 2}{\rm 3}+\frac{\rm \sqrt{3}}{\rm 4\cdot\pi}).$$
  • The probability we are looking for is given by the ratio of the areas  $F$  and  $G$  (see sketch):
$$\rm Pr(\rm -\pi/4\le\it\alpha\le+\rm\pi/4)=\frac{\it F}{\it G}=\frac{1/4}{2/3+{\rm sin(60^{\circ})}/({\rm 2\pi})}=\frac{\rm 0.25}{\rm 0.805}\hspace{0.15cm}\underline{=\rm 31.1\%}.$$
  • Although nothing has changed from point  (4)  at the area  $F$  the probability now becomes larger by a factor  $1/0.805 ≈ 1.242$  due to the smaller area  $G$ .


(8)  Since the overall PDF area is constantly equal  $1$  and the PDF decreases at the boundaries, it must have a larger value in the range  $|\alpha| < 2\pi/3$  than in  (1).

  • With the results from  (1)  and  (7)  holds:
$$f_{\alpha}(\alpha = 0)=\frac{1/(2\pi)}{2/3+{\rm sin(\rm 60^{\circ})}/({\rm 2\pi})} = \frac{\rm 1}{{\rm 4\cdot\pi}/{\rm 3}+\rm sin(60^{\circ})}\hspace{0.15cm}\underline{\approx \rm 0.198}.$$
  • Like the probability in  (7)  also simultaneously the PDF value in the range  $|\alpha| < 2\pi/3$  increases by a factor  $1.242$  as the coverage area becomes smaller.