Difference between revisions of "Aufgaben:Exercise 3.8: Amplification and Limitation"

From LNTwww
m (Text replacement - "rms value" to "standard deviation")
 
(5 intermediate revisions by 2 users not shown)
Line 4: Line 4:
  
 
[[File:P_ID130__Sto_A_3_8.png|right|frame|Amplification and limitation<br>of the random variable&nbsp; $x$]]
 
[[File:P_ID130__Sto_A_3_8.png|right|frame|Amplification and limitation<br>of the random variable&nbsp; $x$]]
We consider a random signal&nbsp; $x(t)$&nbsp; with symmetric probability density function:
+
We consider a random signal&nbsp; $x(t)$&nbsp; with symmetric probability density function&nbsp; $\rm (PDF)$:
 
:$$f_x(x)=A\cdot \rm e^{\rm -2 \hspace{0.05cm}\cdot \hspace{0.05cm}|\it x|}.$$
 
:$$f_x(x)=A\cdot \rm e^{\rm -2 \hspace{0.05cm}\cdot \hspace{0.05cm}|\it x|}.$$
  
*This signal is applied to the input of a nonlinearity with the characteristic curve (see lower figure):
+
*This signal is applied to the input of a nonlinearity with the characteristic curve&nbsp; (see lower figure):
 
:$$y=\left\{\begin{array}{*{4}{c}}0  &\rm for\hspace{0.2cm} \it x <\rm 0, \\\rm2\it x  & \rm for\hspace{0.2cm} \rm 0\le \it x\le \rm 0.5,  \\1 & \rm for\hspace{0.2cm}\it x > \rm 0.5\\\end{array}\right.$$
 
:$$y=\left\{\begin{array}{*{4}{c}}0  &\rm for\hspace{0.2cm} \it x <\rm 0, \\\rm2\it x  & \rm for\hspace{0.2cm} \rm 0\le \it x\le \rm 0.5,  \\1 & \rm for\hspace{0.2cm}\it x > \rm 0.5\\\end{array}\right.$$
  
Line 20: Line 20:
 
Hints:
 
Hints:
 
*The exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Exponentially_Distributed_Random_Variables|Exponentially Distributed Random Variable]].
 
*The exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Exponentially_Distributed_Random_Variables|Exponentially Distributed Random Variable]].
+
* Use the HTML5/JavaScript&ndash; applet&nbsp; [[Applets:PDF,_CDF_and_Moments_of_Special_Distributions|PDF, CDF and Moments of Special Distributions]]&nbsp; to check your results.
 
*Given the following definite integral:
 
*Given the following definite integral:
 
:$$\int_{0}^{\infty}\it x^n\cdot\rm e^{-\it a \hspace{0.03cm}\cdot \hspace{0.03cm}x}\, d{\it x} =\frac{\it n{\rm !}}{\it a^{n}}.$$
 
:$$\int_{0}^{\infty}\it x^n\cdot\rm e^{-\it a \hspace{0.03cm}\cdot \hspace{0.03cm}x}\, d{\it x} =\frac{\it n{\rm !}}{\it a^{n}}.$$
Line 33: Line 33:
  
  
{Calculate the moments&nbsp; $m_k$&nbsp; of the random variable&nbsp; $x$.&nbsp; Reason that all moments with odd index are zero. <br>How big is the rms value?
+
{Calculate the moments&nbsp; $m_k$&nbsp; of the random variable&nbsp; $x$.&nbsp; Reason that all moments with odd index are zero.&nbsp; How big is the standard deviation?
 
|type="{}"}
 
|type="{}"}
 
$\sigma_x \ = \ $ { 0.707 3% }
 
$\sigma_x \ = \ $ { 0.707 3% }
  
  
{What is the value of the kurtosis of the random size $x$?
+
{What is the value of the kurtosis of the random variable&nbsp; $x$?
 
|type="{}"}
 
|type="{}"}
 
$K_x \ = \ $ { 6 3% }
 
$K_x \ = \ $ { 6 3% }
Line 60: Line 60:
  
  
{What is the mean of the bounded and amplified random variable $y$?
+
{What is the mean of the bounded and amplified random variable&nbsp; $y$?
 
|type="{}"}
 
|type="{}"}
 
$m_y \ = \ $ { 0.316 3% }
 
$m_y \ = \ $ { 0.316 3% }
Line 72: Line 72:
 
:$$\it F=\rm 2\cdot \it A\int_{\rm 0}^{\infty}\hspace{-0.15cm}\rm e^{\rm -2\it x}\, \rm d \it x=\frac{\rm 2\cdot \it A}{\rm -2}\cdot \rm e^{\rm -2\it x}\Big|_{\rm 0}^{\infty}=\it A.$$
 
:$$\it F=\rm 2\cdot \it A\int_{\rm 0}^{\infty}\hspace{-0.15cm}\rm e^{\rm -2\it x}\, \rm d \it x=\frac{\rm 2\cdot \it A}{\rm -2}\cdot \rm e^{\rm -2\it x}\Big|_{\rm 0}^{\infty}=\it A.$$
  
*Since this area must be equal by definition&nbsp; $F = 1$&nbsp; $\underline{A = 1}$.
+
*Since this area must be equal by definition&nbsp; $F = 1$ &nbsp; &rArr; &nbsp; $\underline{A = 1}$.
  
  
  
'''(2)'''&nbsp; All moments with odd index&nbsp; $k$&nbsp; are equal to zero due to symmetric PDF.  
+
'''(2)'''&nbsp; All moments with odd index&nbsp; $k$&nbsp; are equal to zero due to the symmetrical PDF.  
 
*For even&nbsp; $k$&nbsp; the left part of the PDF can be mirrored into the right one and we get:
 
*For even&nbsp; $k$&nbsp; the left part of the PDF can be mirrored into the right one and we get:
:$$\it m_k=\rm 2 \cdot \int_{\rm 0}^{\infty}\hspace{-0. 15cm}\it x^{k}\cdot \rm e^{-\rm 2\it x}\,\rm d \it x=\frac{\rm 2\cdot\rm\Gamma(\it k{\rm +}\rm 1)}{\rm 2^{\it k{\rm +}\rm 1}}=\frac{\it k{\rm !}}{\rm 2^{\it k}}.$$
+
:$$\it m_k=\rm 2 \cdot \int_{\rm 0}^{\infty}\hspace{-0.15cm}\it x^{k}\cdot \rm e^{-\rm 2\it x}\,\rm d \it x=\frac{\rm 2\cdot\rm\Gamma(\it k{\rm +}\rm 1)}{\rm 2^{\it k{\rm +}\rm 1}}=\frac{\it k{\rm !}}{\rm 2^{\it k}}.$$
  
 
*From this it follows with&nbsp; $k = 2$&nbsp; considering the mean&nbsp; $m_1 = 0$:
 
*From this it follows with&nbsp; $k = 2$&nbsp; considering the mean&nbsp; $m_1 = 0$:
Line 84: Line 84:
  
  
[[File:P_ID131__Sto_A_3_8_e.png|right|frame|PDF after reinforcement and boundary]]
+
[[File:P_ID131__Sto_A_3_8_e.png|right|frame|PDF after amplification and boundary]]
 
'''(3)'''&nbsp; The fourth-order central moment is&nbsp; $\mu_4 = m_4 = 4!/2^4 = 1.5$.  
 
'''(3)'''&nbsp; The fourth-order central moment is&nbsp; $\mu_4 = m_4 = 4!/2^4 = 1.5$.  
 
*From this follows for the kurtosis:
 
*From this follows for the kurtosis:
Line 94: Line 94:
  
  
'''(5)'''&nbsp; Correct are <u>solutions 1 and 3</u>:
+
'''(5)'''&nbsp; Correct are the&nbsp; <u>solutions 1 and 3</u>:
 
*The PDF&nbsp; $f_y(y)$&nbsp; involves a Dirac delta function at the point&nbsp; $y= 0$&nbsp; with weight&nbsp; ${\rm Pr}(x < 0) = 0.5$.  
 
*The PDF&nbsp; $f_y(y)$&nbsp; involves a Dirac delta function at the point&nbsp; $y= 0$&nbsp; with weight&nbsp; ${\rm Pr}(x < 0) = 0.5$.  
*In addition, another Dirac delta function at&nbsp; $y= 1$&nbsp; with weight&nbsp; ${\rm Pr}(x > 0.5) = 0.184$.  
+
*In addition,&nbsp; another Dirac delta function at&nbsp; $y= 1$&nbsp; with weight&nbsp; ${\rm Pr}(x > 0.5) = 0.184$.  
  
  
Line 102: Line 102:
 
'''(6)'''&nbsp; The signal range&nbsp; $0 \le x \le 0.5$&nbsp; is linearly mapped to the range&nbsp; $0 \le y \le 1$&nbsp; at the output.  
 
'''(6)'''&nbsp; The signal range&nbsp; $0 \le x \le 0.5$&nbsp; is linearly mapped to the range&nbsp; $0 \le y \le 1$&nbsp; at the output.  
 
*The derivative of the characteristic curve is constantly equal to $2$&nbsp; (amplification). From this one obtains:
 
*The derivative of the characteristic curve is constantly equal to $2$&nbsp; (amplification). From this one obtains:
:$$f_y(y)=\frac{f_x(x)}{|g'(x)|}\Bigg|_{x=h(y)}=\frac{\rm e^{-\rm 2\it x}{\rm 2}\Bigg|_{\it x={\it y}/{\rm 2}}=0.5 \cdot {\rm e^{\it -y}} .$$
+
:$$f_y(y)=\frac{f_x(x)}{|g'(x)|}\Bigg|_{x=h(y)}=\frac{\rm e^{-\rm 2\it x}}{\rm 2}\Bigg|_{\it x={\it y}/{\rm 2}}=0.5 \cdot {\rm e^{\it -y}} .$$
  
*For&nbsp; $y= 0.5$&nbsp; accordingly, the continuous PDF portion is  
+
*For&nbsp; $y= 0.5$&nbsp; accordingly,&nbsp; the continuous PDF component is  
 
:$$f_y(y = 0.5)\hspace{0.15cm}\underline{\approx 0.304}.$$
 
:$$f_y(y = 0.5)\hspace{0.15cm}\underline{\approx 0.304}.$$
  
  
'''(7)'''&nbsp; For the mean value of the random gr&ouml;&aerospace;e&nbsp; $y$&nbsp; holds:
+
'''(7)'''&nbsp; For the mean value of the random variable&nbsp; $y$&nbsp; holds:
:$$m_y=\frac{1}{\rm 2\rm e} \cdot 1 +\int_{\rm 0}^{\rm 1}\frac{\it y}{\rm 2}\cdot \rm e^{\it -y}\, \rm d \it y=\frac{\rm 1}{\rm 2\rm e}{\rm +}\frac{\rm 1}{\rm 2}-\frac{\rm 1}{\rm e}=\frac{\rm 1}{\rm 2}-\frac{\rm 1}{\rm 2 e}\hspace{0. 15cm}\underline{=\rm 0.316}.$$
+
:$$m_y=\frac{1}{\rm 2\rm e} \cdot 1 +\int_{\rm 0}^{\rm 1}\frac{\it y}{\rm 2}\cdot \rm e^{\it -y}\, \rm d \it y=\frac{\rm 1}{\rm 2\rm e}{\rm +}\frac{\rm 1}{\rm 2}-\frac{\rm 1}{\rm e}=\frac{\rm 1}{\rm 2}-\frac{\rm 1}{\rm 2 e}\hspace{0.15cm}\underline{=\rm 0.316}.$$
  
*The first term is from the Dirac delta at&nbsp; $y= 1$, the second from the continuous PDF&ndash;fraction.
+
*The first term is from the Dirac delta at&nbsp; $y= 1$,&nbsp; the second from the continuous PDF component.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Latest revision as of 12:11, 17 February 2022

Amplification and limitation
of the random variable  $x$

We consider a random signal  $x(t)$  with symmetric probability density function  $\rm (PDF)$:

$$f_x(x)=A\cdot \rm e^{\rm -2 \hspace{0.05cm}\cdot \hspace{0.05cm}|\it x|}.$$
  • This signal is applied to the input of a nonlinearity with the characteristic curve  (see lower figure):
$$y=\left\{\begin{array}{*{4}{c}}0 &\rm for\hspace{0.2cm} \it x <\rm 0, \\\rm2\it x & \rm for\hspace{0.2cm} \rm 0\le \it x\le \rm 0.5, \\1 & \rm for\hspace{0.2cm}\it x > \rm 0.5\\\end{array}\right.$$
  • The characteristic sketched below limits the variable  $x(t)$  at the input asymmetrically and amplifies it in the linear range.




Hints:

$$\int_{0}^{\infty}\it x^n\cdot\rm e^{-\it a \hspace{0.03cm}\cdot \hspace{0.03cm}x}\, d{\it x} =\frac{\it n{\rm !}}{\it a^{n}}.$$


Questions

1

Calculate the function value  $A= f_x(0)$  of the PDF at the location  $x = 0$.

$A \ = \ $

2

Calculate the moments  $m_k$  of the random variable  $x$.  Reason that all moments with odd index are zero.  How big is the standard deviation?

$\sigma_x \ = \ $

3

What is the value of the kurtosis of the random variable  $x$?

$K_x \ = \ $

4

What is the probability that  $x$  exceeds  $0.5$ ?

${\rm Pr}(x > 0.5) \ = \ $

$\ \%$

5

Which of the following statements are true regarding the PDF  $f_y(y)$ ?

The PDF contains a Dirac delta function at  $y = 0$.
The PDF contains a Dirac delta function at  $y = 0.5$.
The PDF contains a Dirac delta function at  $y = 1$.

6

What is the continuous part of the PDF  $f_y(y)$?  What value results for  $y = 0.5$ ?

$f_y(y = 0.5) \ = \ $

7

What is the mean of the bounded and amplified random variable  $y$?

$m_y \ = \ $


Solution

(1)  The area under the probability density function yields

$$\it F=\rm 2\cdot \it A\int_{\rm 0}^{\infty}\hspace{-0.15cm}\rm e^{\rm -2\it x}\, \rm d \it x=\frac{\rm 2\cdot \it A}{\rm -2}\cdot \rm e^{\rm -2\it x}\Big|_{\rm 0}^{\infty}=\it A.$$
  • Since this area must be equal by definition  $F = 1$   ⇒   $\underline{A = 1}$.


(2)  All moments with odd index  $k$  are equal to zero due to the symmetrical PDF.

  • For even  $k$  the left part of the PDF can be mirrored into the right one and we get:
$$\it m_k=\rm 2 \cdot \int_{\rm 0}^{\infty}\hspace{-0.15cm}\it x^{k}\cdot \rm e^{-\rm 2\it x}\,\rm d \it x=\frac{\rm 2\cdot\rm\Gamma(\it k{\rm +}\rm 1)}{\rm 2^{\it k{\rm +}\rm 1}}=\frac{\it k{\rm !}}{\rm 2^{\it k}}.$$
  • From this it follows with  $k = 2$  considering the mean  $m_1 = 0$:
$$m_{\rm 2}=\frac{\rm 2!}{\rm 2^2}={\rm 0.5\hspace{0.5cm}bzw.\hspace{0.5cm} }\sigma_x=\sqrt{ m_{\rm 2}}\hspace{0.15cm}\underline{=\rm 0.707}.$$


PDF after amplification and boundary

(3)  The fourth-order central moment is  $\mu_4 = m_4 = 4!/2^4 = 1.5$.

  • From this follows for the kurtosis:
$$K_{x}=\frac{ \mu_{\rm 4}}{ \sigma_{\it x}^{4}}=\frac{1.5}{0.25}\hspace{0.15cm}\underline{=\rm 6}.$$


(4)  Using the result from  (1)  we get:

$${\rm Pr}( x> 0.5)=\int_{0.5}^{\infty}{\rm e}^{- 2 x}\,{\rm d}x=\frac{\rm 1}{\rm 2\rm e}\hspace{0.15cm}\underline{=\rm 18.4\%}.$$


(5)  Correct are the  solutions 1 and 3:

  • The PDF  $f_y(y)$  involves a Dirac delta function at the point  $y= 0$  with weight  ${\rm Pr}(x < 0) = 0.5$.
  • In addition,  another Dirac delta function at  $y= 1$  with weight  ${\rm Pr}(x > 0.5) = 0.184$.


(6)  The signal range  $0 \le x \le 0.5$  is linearly mapped to the range  $0 \le y \le 1$  at the output.

  • The derivative of the characteristic curve is constantly equal to $2$  (amplification). From this one obtains:
$$f_y(y)=\frac{f_x(x)}{|g'(x)|}\Bigg|_{x=h(y)}=\frac{\rm e^{-\rm 2\it x}}{\rm 2}\Bigg|_{\it x={\it y}/{\rm 2}}=0.5 \cdot {\rm e^{\it -y}} .$$
  • For  $y= 0.5$  accordingly,  the continuous PDF component is
$$f_y(y = 0.5)\hspace{0.15cm}\underline{\approx 0.304}.$$


(7)  For the mean value of the random variable  $y$  holds:

$$m_y=\frac{1}{\rm 2\rm e} \cdot 1 +\int_{\rm 0}^{\rm 1}\frac{\it y}{\rm 2}\cdot \rm e^{\it -y}\, \rm d \it y=\frac{\rm 1}{\rm 2\rm e}{\rm +}\frac{\rm 1}{\rm 2}-\frac{\rm 1}{\rm e}=\frac{\rm 1}{\rm 2}-\frac{\rm 1}{\rm 2 e}\hspace{0.15cm}\underline{=\rm 0.316}.$$
  • The first term is from the Dirac delta at  $y= 1$,  the second from the continuous PDF component.