Difference between revisions of "Aufgaben:Exercise 3.6: Noisy DC Signal"
From LNTwww
m (Text replacement - "[[Stochastische_Signaltheorie/" to "[[Theory_of_Stochastic_Signals/") |
|||
(13 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables |
}} | }} | ||
− | [[File:P_ID126__Sto_A_3_6.png|right|frame| | + | [[File:P_ID126__Sto_A_3_6.png|right|frame|Noisy DC signal and PDF]] |
− | + | A DC signal $s(t) = 2\hspace{0.05cm}\rm V$ is additively overlaid by a noise signal $n(t)$. | |
− | * | + | *In the upper picture you can see a section of the sum signal $x(t)=s(t)+n(t).$ |
− | * | + | *The probability density function $\rm (PDF)$ of the signal $x(t)$ is shown below. |
− | * | + | *The $($related to the resistor $1\hspace{0.05cm} \Omega)$ total power of this signal is $P_x = 5\hspace{0.05cm}\rm V^2$. |
Line 14: | Line 14: | ||
− | + | Hints: | |
− | * | + | *The exercise belongs to the chapter [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables|Gaussian Distributed Random Variables]]. |
− | * | + | *Use the [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables#Exceedance_probability|complementary Gaussian error integral]] ${\rm Q}(x)$ to solve. |
− | * | + | *The following are some values of this monotonically decreasing function: |
:$$\rm Q(0) = 0.5,\hspace{0.5cm} Q(1) = 0.1587, \hspace{0.5cm}\rm Q(2) = 0.0227, \hspace{0.5cm} Q(3) = 0.0013. $$ | :$$\rm Q(0) = 0.5,\hspace{0.5cm} Q(1) = 0.1587, \hspace{0.5cm}\rm Q(2) = 0.0227, \hspace{0.5cm} Q(3) = 0.0013. $$ | ||
Line 23: | Line 23: | ||
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | { Which of the following statements are true? |
|type="[]"} | |type="[]"} | ||
− | - | + | - The signal $s(t)$ is uniformly distributed. |
− | + | + | + The noise signal $n(t)$ is Gaussian distributed. |
− | - | + | - The noise signal $n(t)$ has a mean value $m_n \ne 0$. |
− | + | + | + The total signal $x(t)$ is Gaussian distributed with mean $m_x = 2\hspace{0.05cm}\rm V$. |
− | { | + | {Calculate the standard deviation of the signal $x(t)$. |
|type="{}"} | |type="{}"} | ||
$\sigma_x \ = \ $ { 1 3% } $\ \rm V$ | $\sigma_x \ = \ $ { 1 3% } $\ \rm V$ | ||
− | { | + | {What is the probability that $x(t) < 0\hspace{0.05cm}\rm V$ ? |
|type="{}"} | |type="{}"} | ||
− | ${\rm Pr}(x < 0\hspace{0.05cm}\rm V)\ = | + | ${\rm Pr}(x < 0\hspace{0.05cm}\rm V)\ = \ $ { 2.27 3% } $\ \%$ |
− | { | + | {What is the probability that $x(t) > 4\hspace{0.05cm}\rm V$? |
|type="{}"} | |type="{}"} | ||
− | ${\rm Pr}(x > 4\hspace{0.05cm}\rm V)\ = | + | ${\rm Pr}(x > 4\hspace{0.05cm}\rm V)\ = \ $ { 2.27 3% } $\ \%$ |
− | { | + | {What is the probability that $x(t)$ is between $3\hspace{0.05cm}\rm V$ and $4\hspace{0.05cm}\rm V$? |
|type="{}"} | |type="{}"} | ||
− | ${\rm Pr}(+3\hspace{0.05cm}{\rm V} < x < +4\hspace{0.05cm}{\rm V}) \ = | + | ${\rm Pr}(+3\hspace{0.05cm}{\rm V} < x < +4\hspace{0.05cm}{\rm V}) \ = \ $ { 13.6 3% } $\ \%$ |
− | |||
− | |||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' Correct are <u>solutions 2 and 4</u>: |
− | * | + | *The uniform signal $s(t)$ is not uniformly distributed, rather its PDF consists of only one Dirac delta function at $m_x = 2\hspace{0.05cm}\rm V$ with weight $1$. |
− | * | + | *The signal $n(t)$ is Gaussian and mean-free ⇒ $m_n = 0$. |
− | * | + | *Therefore the sum signal $x(t)$ is also Gaussian, but now with mean $m_x = 2\hspace{0.05cm}\rm V$. |
− | * | + | *This is due to the DC signal alone $s(t) = 2\hspace{0.05cm}\rm V$. |
− | '''(2)''' | + | '''(2)''' According to Steiner's theorem: |
:$$\sigma_{x}^{\rm 2}=m_{\rm 2 \it x}-m_{x}^{\rm 2}. $$ | :$$\sigma_{x}^{\rm 2}=m_{\rm 2 \it x}-m_{x}^{\rm 2}. $$ | ||
− | * | + | *The second order moment $m_{2x}$ is equal to the $($referred to $1\hspace{0.05cm} \Omega)$ total power $P_x = 5\hspace{0.05cm}\rm V^2$. |
− | * | + | *With the mean $m_x = 2\hspace{0.05cm}\rm V$ it follows for the standard deviation: |
:$$\sigma_{x} = \sqrt{5\hspace{0.05cm}\rm V^2 - (2\hspace{0.05cm}\rm V)^2} \hspace{0.15cm}\underline{= 1\hspace{0.05cm}\rm V}.$$ | :$$\sigma_{x} = \sqrt{5\hspace{0.05cm}\rm V^2 - (2\hspace{0.05cm}\rm V)^2} \hspace{0.15cm}\underline{= 1\hspace{0.05cm}\rm V}.$$ | ||
− | '''(3)''' | + | '''(3)''' The CDF of a Gaussian random variable $($mean $m_x$, standard deviation $\sigma_x)$ is with the Gaussian error integral: |
:$$F_x(r)=\rm\phi(\it\frac{r-m_x}{\sigma_x}\rm ).$$ | :$$F_x(r)=\rm\phi(\it\frac{r-m_x}{\sigma_x}\rm ).$$ | ||
− | * | + | *The cumulative distribution function at the point $r = 0\hspace{0.05cm}\rm V$ is equal to the probability that $x$ is less than or equal to $0\hspace{0.05cm}\rm V$ . |
− | * | + | *But for continuous random variables, ${\rm Pr}(x \le r) = {\rm Pr}(x < r)$ also holds . |
− | + | *Using the complementary Gaussian error integral, we obtain: | |
:$$\rm Pr(\it x < \rm 0\,V)=\rm \phi(\rm \frac{-2\,V}{1\,V})=\rm Q(\rm 2)\hspace{0.15cm}\underline{=\rm 2.27\%}.$$ | :$$\rm Pr(\it x < \rm 0\,V)=\rm \phi(\rm \frac{-2\,V}{1\,V})=\rm Q(\rm 2)\hspace{0.15cm}\underline{=\rm 2.27\%}.$$ | ||
− | '''(4)''' | + | '''(4)''' Because of the symmetry around the mean $m_x = 2\hspace{0.05cm}\rm V$ this gives the same probability, viz. |
:$$\rm Pr(\it x > \rm 4\,V)\hspace{0.15cm}\underline{=\rm 2.27\%}.$$ | :$$\rm Pr(\it x > \rm 4\,V)\hspace{0.15cm}\underline{=\rm 2.27\%}.$$ | ||
− | '''(5)''' | + | '''(5)''' The probability that $x$ is greater than $3\hspace{0.05cm}\rm V$ is given by. |
:$${\rm Pr}( x > 3\text{ V}) = 1- F_x(\frac{3\text{ V}-2\text{ V}}{1\text{ V}})=\rm Q(\rm 1)=\rm 0.1587.$$ | :$${\rm Pr}( x > 3\text{ V}) = 1- F_x(\frac{3\text{ V}-2\text{ V}}{1\text{ V}})=\rm Q(\rm 1)=\rm 0.1587.$$ | ||
− | * | + | *For the sought probability one obtains from it: |
:$$\rm Pr(3\,V\le \it x \le \rm 4\,V)= \rm Pr(\it x > \rm 3\,V)- \rm Pr(\it x > \rm 4\,V) = 0.1587 - 0.0227\hspace{0.15cm}\underline{=\rm 13.6\%}. $$ | :$$\rm Pr(3\,V\le \it x \le \rm 4\,V)= \rm Pr(\it x > \rm 3\,V)- \rm Pr(\it x > \rm 4\,V) = 0.1587 - 0.0227\hspace{0.15cm}\underline{=\rm 13.6\%}. $$ | ||
Line 101: | Line 99: | ||
− | [[Category: | + | [[Category:Theory of Stochastic Signals: Exercises|^3.5 Gaussian Random Variable^]] |
Latest revision as of 16:02, 17 February 2022
A DC signal $s(t) = 2\hspace{0.05cm}\rm V$ is additively overlaid by a noise signal $n(t)$.
- In the upper picture you can see a section of the sum signal $x(t)=s(t)+n(t).$
- The probability density function $\rm (PDF)$ of the signal $x(t)$ is shown below.
- The $($related to the resistor $1\hspace{0.05cm} \Omega)$ total power of this signal is $P_x = 5\hspace{0.05cm}\rm V^2$.
Hints:
- The exercise belongs to the chapter Gaussian Distributed Random Variables.
- Use the complementary Gaussian error integral ${\rm Q}(x)$ to solve.
- The following are some values of this monotonically decreasing function:
- $$\rm Q(0) = 0.5,\hspace{0.5cm} Q(1) = 0.1587, \hspace{0.5cm}\rm Q(2) = 0.0227, \hspace{0.5cm} Q(3) = 0.0013. $$
Questions
Solution
(1) Correct are solutions 2 and 4:
- The uniform signal $s(t)$ is not uniformly distributed, rather its PDF consists of only one Dirac delta function at $m_x = 2\hspace{0.05cm}\rm V$ with weight $1$.
- The signal $n(t)$ is Gaussian and mean-free ⇒ $m_n = 0$.
- Therefore the sum signal $x(t)$ is also Gaussian, but now with mean $m_x = 2\hspace{0.05cm}\rm V$.
- This is due to the DC signal alone $s(t) = 2\hspace{0.05cm}\rm V$.
(2) According to Steiner's theorem:
- $$\sigma_{x}^{\rm 2}=m_{\rm 2 \it x}-m_{x}^{\rm 2}. $$
- The second order moment $m_{2x}$ is equal to the $($referred to $1\hspace{0.05cm} \Omega)$ total power $P_x = 5\hspace{0.05cm}\rm V^2$.
- With the mean $m_x = 2\hspace{0.05cm}\rm V$ it follows for the standard deviation:
- $$\sigma_{x} = \sqrt{5\hspace{0.05cm}\rm V^2 - (2\hspace{0.05cm}\rm V)^2} \hspace{0.15cm}\underline{= 1\hspace{0.05cm}\rm V}.$$
(3) The CDF of a Gaussian random variable $($mean $m_x$, standard deviation $\sigma_x)$ is with the Gaussian error integral:
- $$F_x(r)=\rm\phi(\it\frac{r-m_x}{\sigma_x}\rm ).$$
- The cumulative distribution function at the point $r = 0\hspace{0.05cm}\rm V$ is equal to the probability that $x$ is less than or equal to $0\hspace{0.05cm}\rm V$ .
- But for continuous random variables, ${\rm Pr}(x \le r) = {\rm Pr}(x < r)$ also holds .
- Using the complementary Gaussian error integral, we obtain:
- $$\rm Pr(\it x < \rm 0\,V)=\rm \phi(\rm \frac{-2\,V}{1\,V})=\rm Q(\rm 2)\hspace{0.15cm}\underline{=\rm 2.27\%}.$$
(4) Because of the symmetry around the mean $m_x = 2\hspace{0.05cm}\rm V$ this gives the same probability, viz.
- $$\rm Pr(\it x > \rm 4\,V)\hspace{0.15cm}\underline{=\rm 2.27\%}.$$
(5) The probability that $x$ is greater than $3\hspace{0.05cm}\rm V$ is given by.
- $${\rm Pr}( x > 3\text{ V}) = 1- F_x(\frac{3\text{ V}-2\text{ V}}{1\text{ V}})=\rm Q(\rm 1)=\rm 0.1587.$$
- For the sought probability one obtains from it:
- $$\rm Pr(3\,V\le \it x \le \rm 4\,V)= \rm Pr(\it x > \rm 3\,V)- \rm Pr(\it x > \rm 4\,V) = 0.1587 - 0.0227\hspace{0.15cm}\underline{=\rm 13.6\%}. $$