Difference between revisions of "Aufgaben:Exercise 3.6: Noisy DC Signal"

From LNTwww
 
(9 intermediate revisions by 3 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID126__Sto_A_3_6.png|right|frame|Noise DC signal and WDF]]
+
[[File:P_ID126__Sto_A_3_6.png|right|frame|Noisy DC signal and PDF]]
A DC signal  $s(t) = 2\hspace{0.05cm}\rm V$  is additively overlaid by a noise signal  $n(t)$  .  
+
A DC signal  $s(t) = 2\hspace{0.05cm}\rm V$  is additively overlaid by a noise signal  $n(t)$.  
 
*In the upper picture you can see a section of the sum signal   $x(t)=s(t)+n(t).$
 
*In the upper picture you can see a section of the sum signal   $x(t)=s(t)+n(t).$
*The probability density function (PDF) of the signal  $x(t)$  is shown below.  
+
*The probability density function  $\rm (PDF)$  of the signal  $x(t)$  is shown below.  
*The  (related to the resistor  $1\hspace{0.05cm} \Omega$  total power of this signal is  $P_x = 5\hspace{0.05cm}\rm V^2$.
+
*The  $($related to the resistor  $1\hspace{0.05cm} \Omega)$  total power of this signal is  $P_x = 5\hspace{0.05cm}\rm V^2$.
  
  
Line 15: Line 15:
  
 
Hints:
 
Hints:
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variable|Gaussian Distributed Random Variable]].
+
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables|Gaussian Distributed Random Variables]].
*Use the  [[Theory_of_Stochastic_Signals/Gaussian_distributed_random_sizes#Exceeding_probability|complementary Gaussian error integral]]  ${\rm Q}(x)$ to solve.  
+
*Use the  [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables#Exceedance_probability|complementary Gaussian error integral]]  ${\rm Q}(x)$ to solve.  
 
*The following are some values of this monotonically decreasing function:
 
*The following are some values of this monotonically decreasing function:
 
:$$\rm Q(0) = 0.5,\hspace{0.5cm} Q(1) = 0.1587, \hspace{0.5cm}\rm Q(2) = 0.0227, \hspace{0.5cm} Q(3) = 0.0013. $$
 
:$$\rm Q(0) = 0.5,\hspace{0.5cm} Q(1) = 0.1587, \hspace{0.5cm}\rm Q(2) = 0.0227, \hspace{0.5cm} Q(3) = 0.0013. $$
Line 34: Line 34:
  
  
{Calculate the standard deviation (rms) of the signal  $x(t)$.
+
{Calculate the standard deviation of the signal  $x(t)$.
 
|type="{}"}
 
|type="{}"}
 
$\sigma_x \ = \ $ { 1 3% } $\ \rm V$
 
$\sigma_x \ = \ $ { 1 3% } $\ \rm V$
  
  
{What is the probability that $x(t) < 0\hspace{0.05cm}\rm V$&nbsp; ?
+
{What is the probability that&nbsp; $x(t) < 0\hspace{0.05cm}\rm V$ ?
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(x < 0\hspace{0.05cm}\rm V)\ = \ $ { 2.27 3% } $\ \%$
 
${\rm Pr}(x < 0\hspace{0.05cm}\rm V)\ = \ $ { 2.27 3% } $\ \%$
  
  
{What is the probability that&nbsp; $x(t) > 4\hspace{0.05cm}\rm V$&nbsp; ?
+
{What is the probability that&nbsp; $x(t) > 4\hspace{0.05cm}\rm V$?
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(x > 4\hspace{0.05cm}\rm V)\ = \ $ { 2.27 3% } $\ \%$
 
${\rm Pr}(x > 4\hspace{0.05cm}\rm V)\ = \ $ { 2.27 3% } $\ \%$
  
  
{What is the probability&nbsp; $x(t)$&nbsp; between&nbsp; $3\hspace{0.05cm}\rm V$&nbsp; and&nbsp; $4\hspace{0.05cm}\rm V$?
+
{What is the probability that&nbsp; $x(t)$&nbsp; is between&nbsp; $3\hspace{0.05cm}\rm V$&nbsp; and&nbsp; $4\hspace{0.05cm}\rm V$?
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(+3\hspace{0.05cm}{\rm V} < x < +4\hspace{0.05cm}{\rm V}) \ = \ $ { 13.6 3% } $\ \%$
 
${\rm Pr}(+3\hspace{0.05cm}{\rm V} < x < +4\hspace{0.05cm}{\rm V}) \ = \ $ { 13.6 3% } $\ \%$
Line 57: Line 57:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Correct are <u>solutions 2 and 4</u>:
+
'''(1)'''&nbsp; Correct are&nbsp; <u>solutions 2 and 4</u>:
*The uniform signal&nbsp; $s(t)$&nbsp; is not uniformly distributed, rather its PDF consists of only one Dirac function at&nbsp; $m_x = 2\hspace{0.05cm}\rm V$&nbsp; with weight&nbsp; $1$.  
+
*The uniform signal&nbsp; $s(t)$&nbsp; is not uniformly distributed,&nbsp; rather its PDF consists of only one Dirac delta function at&nbsp; $m_x = 2\hspace{0.05cm}\rm V$&nbsp; with weight&nbsp; $1$.  
*The signal&nbsp; $n(t)$&nbsp; is gaussian and mean-free &nbsp; &rArr; &nbsp; $m_n = 0$.  
+
*The signal&nbsp; $n(t)$&nbsp; is Gaussian and mean-free &nbsp; &rArr; &nbsp; $m_n = 0$.  
*Therefore the sum signal&nbsp; $x(t)$&nbsp; is also Gaussian, but now with mean&nbsp; $m_x = 2\hspace{0.05cm}\rm V$.  
+
*Therefore the sum signal&nbsp; $x(t)$&nbsp; is also Gaussian,&nbsp; but now with mean&nbsp; $m_x = 2\hspace{0.05cm}\rm V$.  
*This is due to the DC signal alone&nbsp; $s(t) = 2\hspace{0.05cm}\rm V$&nbsp;.  
+
*This is due to the DC signal alone&nbsp; $s(t) = 2\hspace{0.05cm}\rm V$.  
  
  
Line 68: Line 68:
 
:$$\sigma_{x}^{\rm 2}=m_{\rm 2 \it x}-m_{x}^{\rm 2}. $$
 
:$$\sigma_{x}^{\rm 2}=m_{\rm 2 \it x}-m_{x}^{\rm 2}. $$
  
*The quadratic mean&nbsp; $m_{2x}$&nbsp; is equal to the&nbsp; $($referred$to&nbsp; $1\hspace{0.05cm} \Omega$&nbsp; total power&nbsp; $P_x = 5\hspace{0.05cm}\rm V^2$.  
+
*The second order moment&nbsp; $m_{2x}$&nbsp; is equal to the&nbsp; $($referred to&nbsp; $1\hspace{0.05cm} \Omega)$&nbsp; total power&nbsp; $P_x = 5\hspace{0.05cm}\rm V^2$.  
*With the mean&nbsp; $m_x = 2\hspace{0.05cm}\rm V$&nbsp; it follows for the dispersion: &nbsp;  
+
*With the mean&nbsp; $m_x = 2\hspace{0.05cm}\rm V$&nbsp; it follows for the standard deviation: &nbsp;  
 
:$$\sigma_{x} = \sqrt{5\hspace{0.05cm}\rm V^2 - (2\hspace{0.05cm}\rm V)^2} \hspace{0.15cm}\underline{= 1\hspace{0.05cm}\rm V}.$$
 
:$$\sigma_{x} = \sqrt{5\hspace{0.05cm}\rm V^2 - (2\hspace{0.05cm}\rm V)^2} \hspace{0.15cm}\underline{= 1\hspace{0.05cm}\rm V}.$$
  
  
  
'''(3)'''&nbsp; The distribution function (CDF) of a Gaussian random gr&ouml;&airst;e&nbsp; $($mean&nbsp; $m_x$,&nbsp; scatter $\sigma_x)$&nbsp; is with the Gaussian error integral:
+
'''(3)'''&nbsp; The CDF of a Gaussian random variable&nbsp; $($mean&nbsp; $m_x$,&nbsp; standard deviation&nbsp; $\sigma_x)$&nbsp; is with the Gaussian error integral:
 
:$$F_x(r)=\rm\phi(\it\frac{r-m_x}{\sigma_x}\rm ).$$
 
:$$F_x(r)=\rm\phi(\it\frac{r-m_x}{\sigma_x}\rm ).$$
  
*The distribution function at the point&nbsp; $r = 0\hspace{0.05cm}\rm V$&nbsp; is equal to the probability that&nbsp; $x$&nbsp; is less than or equal to&nbsp; $0\hspace{0.05cm}\rm V$&nbsp;.  
+
*The cumulative distribution function at the point&nbsp; $r = 0\hspace{0.05cm}\rm V$&nbsp; is equal to the probability that&nbsp; $x$&nbsp; is less than or equal to&nbsp; $0\hspace{0.05cm}\rm V$&nbsp;.  
*But for continuous random variables, ${\rm Pr}(x \le r) = {\rm Pr}(x < r)$ also holds&nbsp;.  
+
*But for continuous random variables,&nbsp; ${\rm Pr}(x \le r) = {\rm Pr}(x < r)$&nbsp; also holds&nbsp;.  
*Using the complementary Gaussian error integral, we obtain:
+
*Using the complementary Gaussian error integral,&nbsp; we obtain:
 
:$$\rm Pr(\it x < \rm 0\,V)=\rm \phi(\rm \frac{-2\,V}{1\,V})=\rm Q(\rm 2)\hspace{0.15cm}\underline{=\rm 2.27\%}.$$
 
:$$\rm Pr(\it x < \rm 0\,V)=\rm \phi(\rm \frac{-2\,V}{1\,V})=\rm Q(\rm 2)\hspace{0.15cm}\underline{=\rm 2.27\%}.$$
  
  
  
'''(4)'''&nbsp; Because of the symmetry around the mean&nbsp; $m_x = 2\hspace{0.05cm}\rm V$&nbsp; this gives the same probability, viz.   
+
'''(4)'''&nbsp; Because of the symmetry around the mean&nbsp; $m_x = 2\hspace{0.05cm}\rm V$&nbsp; this gives the same probability,&nbsp; viz.   
 
:$$\rm Pr(\it x > \rm 4\,V)\hspace{0.15cm}\underline{=\rm 2.27\%}.$$
 
:$$\rm Pr(\it x > \rm 4\,V)\hspace{0.15cm}\underline{=\rm 2.27\%}.$$
  

Latest revision as of 16:02, 17 February 2022

Noisy DC signal and PDF

A DC signal  $s(t) = 2\hspace{0.05cm}\rm V$  is additively overlaid by a noise signal  $n(t)$.

  • In the upper picture you can see a section of the sum signal   $x(t)=s(t)+n(t).$
  • The probability density function  $\rm (PDF)$  of the signal  $x(t)$  is shown below.
  • The  $($related to the resistor  $1\hspace{0.05cm} \Omega)$  total power of this signal is  $P_x = 5\hspace{0.05cm}\rm V^2$.




Hints:

$$\rm Q(0) = 0.5,\hspace{0.5cm} Q(1) = 0.1587, \hspace{0.5cm}\rm Q(2) = 0.0227, \hspace{0.5cm} Q(3) = 0.0013. $$



Questions

1

Which of the following statements are true?

The signal $s(t)$  is uniformly distributed.
The noise signal  $n(t)$  is Gaussian distributed.
The noise signal  $n(t)$  has a mean value  $m_n \ne 0$.
The total signal  $x(t)$  is Gaussian distributed with mean  $m_x = 2\hspace{0.05cm}\rm V$.

2

Calculate the standard deviation of the signal  $x(t)$.

$\sigma_x \ = \ $

$\ \rm V$

3

What is the probability that  $x(t) < 0\hspace{0.05cm}\rm V$ ?

${\rm Pr}(x < 0\hspace{0.05cm}\rm V)\ = \ $

$\ \%$

4

What is the probability that  $x(t) > 4\hspace{0.05cm}\rm V$?

${\rm Pr}(x > 4\hspace{0.05cm}\rm V)\ = \ $

$\ \%$

5

What is the probability that  $x(t)$  is between  $3\hspace{0.05cm}\rm V$  and  $4\hspace{0.05cm}\rm V$?

${\rm Pr}(+3\hspace{0.05cm}{\rm V} < x < +4\hspace{0.05cm}{\rm V}) \ = \ $

$\ \%$


Solution

(1)  Correct are  solutions 2 and 4:

  • The uniform signal  $s(t)$  is not uniformly distributed,  rather its PDF consists of only one Dirac delta function at  $m_x = 2\hspace{0.05cm}\rm V$  with weight  $1$.
  • The signal  $n(t)$  is Gaussian and mean-free   ⇒   $m_n = 0$.
  • Therefore the sum signal  $x(t)$  is also Gaussian,  but now with mean  $m_x = 2\hspace{0.05cm}\rm V$.
  • This is due to the DC signal alone  $s(t) = 2\hspace{0.05cm}\rm V$.


(2)  According to Steiner's theorem:

$$\sigma_{x}^{\rm 2}=m_{\rm 2 \it x}-m_{x}^{\rm 2}. $$
  • The second order moment  $m_{2x}$  is equal to the  $($referred to  $1\hspace{0.05cm} \Omega)$  total power  $P_x = 5\hspace{0.05cm}\rm V^2$.
  • With the mean  $m_x = 2\hspace{0.05cm}\rm V$  it follows for the standard deviation:  
$$\sigma_{x} = \sqrt{5\hspace{0.05cm}\rm V^2 - (2\hspace{0.05cm}\rm V)^2} \hspace{0.15cm}\underline{= 1\hspace{0.05cm}\rm V}.$$


(3)  The CDF of a Gaussian random variable  $($mean  $m_x$,  standard deviation  $\sigma_x)$  is with the Gaussian error integral:

$$F_x(r)=\rm\phi(\it\frac{r-m_x}{\sigma_x}\rm ).$$
  • The cumulative distribution function at the point  $r = 0\hspace{0.05cm}\rm V$  is equal to the probability that  $x$  is less than or equal to  $0\hspace{0.05cm}\rm V$ .
  • But for continuous random variables,  ${\rm Pr}(x \le r) = {\rm Pr}(x < r)$  also holds .
  • Using the complementary Gaussian error integral,  we obtain:
$$\rm Pr(\it x < \rm 0\,V)=\rm \phi(\rm \frac{-2\,V}{1\,V})=\rm Q(\rm 2)\hspace{0.15cm}\underline{=\rm 2.27\%}.$$


(4)  Because of the symmetry around the mean  $m_x = 2\hspace{0.05cm}\rm V$  this gives the same probability,  viz.

$$\rm Pr(\it x > \rm 4\,V)\hspace{0.15cm}\underline{=\rm 2.27\%}.$$


(5)  The probability that  $x$  is greater than  $3\hspace{0.05cm}\rm V$ is given by.

$${\rm Pr}( x > 3\text{ V}) = 1- F_x(\frac{3\text{ V}-2\text{ V}}{1\text{ V}})=\rm Q(\rm 1)=\rm 0.1587.$$
  • For the sought probability one obtains from it:
$$\rm Pr(3\,V\le \it x \le \rm 4\,V)= \rm Pr(\it x > \rm 3\,V)- \rm Pr(\it x > \rm 4\,V) = 0.1587 - 0.0227\hspace{0.15cm}\underline{=\rm 13.6\%}. $$