Difference between revisions of "Aufgaben:Exercise 3.9Z: Sine Transformation"

From LNTwww
 
(7 intermediate revisions by 3 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID137__Sto_Z_3_9.png|right|frame|Input PDF and characteristic curve]]
+
[[File:P_ID137__Sto_Z_3_9.png|right|frame|Input PDF, characteristic curve]]
In this task, we consider a random variable  $x$  with  $\sin^2$& shaped PDF in the range between  $x= 0$  and  $x= 2$:
+
In this task,  we consider a random variable  $x$  with sine-square shaped  $\rm PDF$  in the range between  $x= 0$  and  $x= 2$:
:$$f_x(x)= \sin^2({\rm\pi}/{\rm 2}\cdot x) \hspace{1cm}\rm for\hspace{0.15cm}{\rm 0\le \it x \le \rm 2} .$$
+
:$$f_x(x)= \sin^2({\rm\pi}/{\rm 2}\cdot x) \hspace{1cm}\rm for\hspace{0.25cm}{\rm 0\le \it x \le \rm 2} .$$
  
Outside of this, the PDF is identically zero.
+
Outside of this,  the PDF is identically zero.
  
The mean and rms of this random variable  $x$  have already been determined in the  [[Aufgaben:Exercise_3.3:_Moments_for_cos²-PDF|Exercise 3.3]]  :
+
The mean and the standard deviation of this random variable  $x$  have already been determined in the  [[Aufgaben:Exercise_3.3:_Moments_for_cos²-PDF|Exercise 3.3]]:
 
:$$m_x = 1,\hspace{0.2cm}\sigma_x = 0.361.$$
 
:$$m_x = 1,\hspace{0.2cm}\sigma_x = 0.361.$$
  
Line 15: Line 15:
 
:$$y= g(x) =\sin({\rm\pi}/{\rm 2}\cdot x).$$
 
:$$y= g(x) =\sin({\rm\pi}/{\rm 2}\cdot x).$$
  
The figure shows in each case in the range  $0 \le x \le 2$:
+
The figure shows in each case in the range   $0 \le x \le 2$:
 
*above the PDF  $f_x(x)$,
 
*above the PDF  $f_x(x)$,
 
*below the nonlinear characteristic  $y = g(x)$.
 
*below the nonlinear characteristic  $y = g(x)$.
Line 28: Line 28:
 
Hints:  
 
Hints:  
 
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Exponentially_Distributed_Random_Variables|Exponentially Distributed Random Variables]].
 
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Exponentially_Distributed_Random_Variables|Exponentially Distributed Random Variables]].
*In particular, reference is made to the page  [[Theory_of_Stochastic_Signals/Exponentially_Distributed_Random_Variables#Transformation_of_random_variables|Transformation of random variables]]  and the chapter  [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments|Expected Values and Moments]].
+
*In particular, reference is made to the section  [[Theory_of_Stochastic_Signals/Exponentially_Distributed_Random_Variables#Transformation_of_random_variables|"Transformation of random variables"]]  and the chapter  [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments|"Expected Values and Moments"]].
 
   
 
   
 
*Given are the two indefinite integrals:
 
*Given are the two indefinite integrals:
Line 40: Line 40:
 
{Which of the following statements are true?
 
{Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
- $y$  is limited to the value range  $0 \le y \le 1$  .
+
- $y$  is limited to the range  $0 \le y \le 1$  .
+ $y$&nbsp; is limited to the value range&nbsp; $0 < y \le 1$&nbsp;.
+
+ $y$&nbsp; is limited to the range&nbsp; $0 < y \le 1$&nbsp;.
 
+ The mean&nbsp; $m_y$&nbsp; is less than the mean&nbsp; $m_x$.
 
+ The mean&nbsp; $m_y$&nbsp; is less than the mean&nbsp; $m_x$.
  
Line 50: Line 50:
  
  
{Calculate the root mean square of&nbsp; $y$&nbsp; and the rms&nbsp;$\sigma_y$ .
+
{Calculate the the&nbsp; standard deviation of  the random variable&nbsp; $y$.
 
|type="{}"}
 
|type="{}"}
 
$\sigma_y \ = \ $ { 0.172 3% }
 
$\sigma_y \ = \ $ { 0.172 3% }
  
  
{Calculate the PDF $f_y(y)$.&nbsp; Note the symmetry properties.&nbsp; What PDF&ndash;value results for&nbsp; $y = 0.6$&nbsp;?
+
{Calculate the PDF $f_y(y)$.&nbsp; Note the symmetry properties.&nbsp; What PDF value results for&nbsp; $y = 0.6$?
 
|type="{}"}
 
|type="{}"}
 
$f_y(y=0.6) \ = \ $ { 0.573 3% }
 
$f_y(y=0.6) \ = \ $ { 0.573 3% }
  
  
{What is the PDF value for&nbsp; $y = 1$?&nbsp; Interpret the result.&nbsp; What is the probability that&nbsp; $y$&nbsp; is exactly equal&nbsp; $1$&nbsp;?
+
{What is the PDF value for&nbsp; $y = 1$?&nbsp; Interpret the result.&nbsp; What is the probability that&nbsp; $y$&nbsp; is exactly equal&nbsp; $1$?
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(y=1) \ = \ $ { 0. }
 
${\rm Pr}(y=1) \ = \ $ { 0. }
Line 69: Line 69:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Correct are <u>the second and the third suggested solutions</u>:
+
'''(1)'''&nbsp; Correct are&nbsp; <u>the second and the third suggested solutions</u>:
 
*Because of the range of values of&nbsp; $x$&nbsp; and the given characteristic curve,&nbsp; $y$&nbsp; cannot take values smaller than&nbsp; $0$&nbsp; or larger than&nbsp; $1$&nbsp; respectively.  
 
*Because of the range of values of&nbsp; $x$&nbsp; and the given characteristic curve,&nbsp; $y$&nbsp; cannot take values smaller than&nbsp; $0$&nbsp; or larger than&nbsp; $1$&nbsp; respectively.  
*The value&nbsp; $y = 0$&nbsp; cannot occur either, however, since neither&nbsp; $x = 0$&nbsp; nor&nbsp; $x = 2$&nbsp; are possible.  
+
*The value&nbsp; $y = 0$&nbsp; cannot occur either,&nbsp; however,&nbsp; since neither&nbsp; $x = 0$&nbsp; nor&nbsp; $x = 2$&nbsp; are possible.  
*With these properties, the result is surely &nbsp;$m_y < 1$, i.e., a smaller value than &nbsp;$m_x = 1$&nbsp; (see specification).  
+
*With these properties,&nbsp; the result is surely &nbsp;$m_y < 1$, i.e., a smaller value than &nbsp;$m_x = 1$&nbsp; (see specification).  
  
  
  
'''(2)'''&nbsp; To solve this task, one could, for example, first determine the PDF&nbsp; $f_y(y)$&nbsp; and calculate &nbsp;$m_y$&nbsp; from it in the usual way.  
+
'''(2)'''&nbsp; To solve this task,&nbsp; one could,&nbsp; for example,&nbsp; first determine the PDF&nbsp; $f_y(y)$&nbsp; and calculate &nbsp;$m_y$&nbsp; from it in the usual way.  
 
*The direct way leads to the same result:
 
*The direct way leads to the same result:
 
:$$m_y={\rm E}\big[y\big]={\rm E}\big[g(x)\big]=\int_{-\infty}^{+\infty}g(x)\cdot f_x(x)\,{\rm d}x.$$
 
:$$m_y={\rm E}\big[y\big]={\rm E}\big[g(x)\big]=\int_{-\infty}^{+\infty}g(x)\cdot f_x(x)\,{\rm d}x.$$
Line 92: Line 92:
 
0.75}.$$
 
0.75}.$$
  
*With the result from&nbsp; '''(2)'''&nbsp; it thus follows for the rms:
+
*With the result from&nbsp; '''(2)'''&nbsp; it thus follows for the standard deviation:
 
:$$ \sigma_{y}=\sqrt{\frac{\rm 3}{\rm 4}-\Big(\frac{\rm 8}{\rm 3\cdot\pi}\Big)^{\rm 2}} \hspace{0.15cm}\underline{\approx \rm 0.172}.$$
 
:$$ \sigma_{y}=\sqrt{\frac{\rm 3}{\rm 4}-\Big(\frac{\rm 8}{\rm 3\cdot\pi}\Big)^{\rm 2}} \hspace{0.15cm}\underline{\approx \rm 0.172}.$$
  
  
  
'''(4)'''&nbsp; Due to the symmetry of PDF&nbsp; $f_x(x)$&nbsp; and characteristic curve&nbsp; $y =g(x)$&nbsp; um&nbsp; $x = 1$&nbsp; the two domains yield.  
+
'''(4)'''&nbsp; Due to the symmetry of the PDF&nbsp; $f_x(x)$&nbsp; and the characteristic curve&nbsp; $y =g(x)$&nbsp; um&nbsp; $x = 1$&nbsp; the two domains yield.  
 
*$0 \le x \le 1$&nbsp; and  
 
*$0 \le x \le 1$&nbsp; and  
 
*$1 \le x \le 2$  
 
*$1 \le x \le 2$  
Line 103: Line 103:
  
 
each give the same contribution for $f_y(y)$.  
 
each give the same contribution for $f_y(y)$.  
*In the first domain, the derivative of the characteristic curve is positive:&nbsp; $g\hspace{0.05cm}'(x)={\rm \pi}/{\rm 2}\cdot \cos({\rm \pi}/{\rm 2}\cdot x).$
+
*In the first domain,&nbsp; the derivative of the characteristic curve is positive:&nbsp; $g\hspace{0.05cm}'(x)={\rm \pi}/{\rm 2}\cdot \cos({\rm \pi}/{\rm 2}\cdot x).$
  
 
*The inverse function is:&nbsp; $ x=h(y)={\rm 2}/{\rm \pi}\cdot \arcsin( y).$
 
*The inverse function is:&nbsp; $ x=h(y)={\rm 2}/{\rm \pi}\cdot \arcsin( y).$
  
*Taking into account the second contribution by the factor&nbsp; $2$&nbsp; we get&auml;r the searched PDF in the range&nbsp; $0 \le y \le 1$ ):
+
*Taking into account the second contribution by the factor&nbsp; $2$&nbsp; we get the searched PDF in the range&nbsp; $0 \le y \le 1$:
 
:$$f_y(y)= 2\cdot\frac{\sin^{ 2}({ \pi}/{ 2}\cdot x)}{{ \pi}/{ 2}\cdot \cos({ \pi}/{ 2}\cdot x)}\Big|_{\, x={ 2}/{ \pi}\cdot \arcsin( y)}.$$
 
:$$f_y(y)= 2\cdot\frac{\sin^{ 2}({ \pi}/{ 2}\cdot x)}{{ \pi}/{ 2}\cdot \cos({ \pi}/{ 2}\cdot x)}\Big|_{\, x={ 2}/{ \pi}\cdot \arcsin( y)}.$$
[[File:P_ID138__Sto_Z_3_9_e_neu.png|right|frame|Sought PDF]]
+
[[File:P_ID138__Sto_Z_3_9_e_neu.png|right|frame|PDF after transformation]]
*outside $f_y(y) is \equiv 0$. This leads to the intermediate result
+
*Outside of this range:&nbsp; $f_y(y) \equiv 0$.&nbsp; This leads to the intermediate result
 
:$$f_y(y)=\frac{4}{\pi}\cdot \frac{\sin^{2}(\arcsin( y ))}{\sqrt{\rm 1-\sin^{ 2}(\arcsin( y \rm ))}}.$$
 
:$$f_y(y)=\frac{4}{\pi}\cdot \frac{\sin^{2}(\arcsin( y ))}{\sqrt{\rm 1-\sin^{ 2}(\arcsin( y \rm ))}}.$$
 
 
*And because of&nbsp; $\sin\big (\arcsin(y)\big) = y$:
 
*And because of&nbsp; $\sin\big (\arcsin(y)\big) = y$:
:$$f_y(y)=\frac{ 4}{\pi}\cdot \frac{ y^{2}}{\sqrt{1- y^{\rm 2}}.$$
+
:$$f_y(y)=\frac{ 4}{\pi}\cdot \frac{ y^{2}}{\sqrt{1- y^{\rm 2}}}.$$
  
 
*At the point&nbsp; $y = 0.6$&nbsp; one obtains the value&nbsp; $f_y(y= 0.6)\hspace{0.15cm}\underline{=0.573}$.  
 
*At the point&nbsp; $y = 0.6$&nbsp; one obtains the value&nbsp; $f_y(y= 0.6)\hspace{0.15cm}\underline{=0.573}$.  
*On the right, this PDF&nbsp; $f_y(y)$&nbsp; is shown graphically.  
+
*On the right,&nbsp; this PDF&nbsp; $f_y(y)$&nbsp; is shown graphically.  
  
  
  
  
'''(5)'''&nbsp; The PDF is infinitely large at the point&nbsp; $y = 1$&nbsp;.  
+
'''(5)'''&nbsp; The PDF is infinitely large at the point&nbsp; $y = 1$.  
 
*This is due to the fact that at this point the derivative&nbsp; $g\hspace{0.05cm}'(x)$&nbsp; of the characteristic curve runs horizontally.
 
*This is due to the fact that at this point the derivative&nbsp; $g\hspace{0.05cm}'(x)$&nbsp; of the characteristic curve runs horizontally.
* However, since&nbsp; $y$&nbsp; is a continuous random gr&ouml;&szlig;e, nevertheless&nbsp; ${\rm Pr}(y = 1) \hspace{0.15cm}\underline{= 0}$ holds.  
+
* However,&nbsp; since&nbsp; $y$&nbsp; is a continuous random quantity,&nbsp; nevertheless&nbsp; ${\rm Pr}(y = 1) \hspace{0.15cm}\underline{= 0}$&nbsp; holds.  
  
  
 
This means:  
 
This means:  
*An infinity point in the PDF is not identical to a Dirac function.
+
*An infinity point in the PDF is not identical to a Dirac delta function.
*Or more casually expressed: &nbsp; An infinity point in the PDF is "less" than a Dirac function.
+
*Or more casually expressed: &nbsp; An infinity point in the PDF is&nbsp; "less"&nbsp; than a Dirac delta function.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Latest revision as of 16:09, 17 February 2022

Input PDF, characteristic curve

In this task,  we consider a random variable  $x$  with sine-square shaped  $\rm PDF$  in the range between  $x= 0$  and  $x= 2$:

$$f_x(x)= \sin^2({\rm\pi}/{\rm 2}\cdot x) \hspace{1cm}\rm for\hspace{0.25cm}{\rm 0\le \it x \le \rm 2} .$$

Outside of this,  the PDF is identically zero.

The mean and the standard deviation of this random variable  $x$  have already been determined in the  Exercise 3.3:

$$m_x = 1,\hspace{0.2cm}\sigma_x = 0.361.$$

Another random variable is obtained by transformation using the nonlinear characteristic curve

$$y= g(x) =\sin({\rm\pi}/{\rm 2}\cdot x).$$

The figure shows in each case in the range   $0 \le x \le 2$:

  • above the PDF  $f_x(x)$,
  • below the nonlinear characteristic  $y = g(x)$.





Hints:

  • Given are the two indefinite integrals:
$$\int \sin^{\rm 3}( ax)\,{\rm d}x = \frac{\rm 1}{ 3 a} \cdot \cos^{\rm 3}( ax)-\frac{\rm 1}{ a}\cdot \cos(ax),$$
$$\int \sin^{\rm 4}(ax)\,{\rm d}x =\frac{\rm 3}{\rm 8}\cdot x-\frac{\rm 1}{\rm 4 a} \cdot \sin(2 ax)+\frac{\rm 1}{32 a}\cdot \sin(4 ax).$$


Questions

1

Which of the following statements are true?

$y$  is limited to the range  $0 \le y \le 1$  .
$y$  is limited to the range  $0 < y \le 1$ .
The mean  $m_y$  is less than the mean  $m_x$.

2

Calculate the mean of the random variable  $y$.

$m_y \ = \ $

3

Calculate the the  standard deviation of the random variable  $y$.

$\sigma_y \ = \ $

4

Calculate the PDF $f_y(y)$.  Note the symmetry properties.  What PDF value results for  $y = 0.6$?

$f_y(y=0.6) \ = \ $

5

What is the PDF value for  $y = 1$?  Interpret the result.  What is the probability that  $y$  is exactly equal  $1$?

${\rm Pr}(y=1) \ = \ $


Solution

(1)  Correct are  the second and the third suggested solutions:

  • Because of the range of values of  $x$  and the given characteristic curve,  $y$  cannot take values smaller than  $0$  or larger than  $1$  respectively.
  • The value  $y = 0$  cannot occur either,  however,  since neither  $x = 0$  nor  $x = 2$  are possible.
  • With these properties,  the result is surely  $m_y < 1$, i.e., a smaller value than  $m_x = 1$  (see specification).


(2)  To solve this task,  one could,  for example,  first determine the PDF  $f_y(y)$  and calculate  $m_y$  from it in the usual way.

  • The direct way leads to the same result:
$$m_y={\rm E}\big[y\big]={\rm E}\big[g(x)\big]=\int_{-\infty}^{+\infty}g(x)\cdot f_x(x)\,{\rm d}x.$$
  • With the current functions  $g(x)$  and  $f_x(x)$  we obtain:
$$m_y=\int_{\rm 0}^{\rm 2}\hspace{-0.1cm}\sin^{\rm 3}({\pi}/{ 2}\cdot x)\,{\rm d}x=\frac{\rm 2}{\rm 3\cdot \pi}\cdot \cos^{\rm 3}({\pi}/{ 2}\cdot x)-\frac{\rm 2}{\rm \pi} \cdot \cos({3 \rm \pi}/{\rm 2}\cdot x)\Big|_{\rm 0}^{\rm 2}=\frac{\rm 8}{\rm 3\cdot \pi} \hspace{0.15cm}\underline{=\rm 0.849}.$$


(3)  By analogy with point  (2)  holds:

$$m_{2 y}={\rm E}[y^{\rm 2}]={\rm E}[g^{\rm 2}( x)]=\int_{-\infty}^{+\infty}\hspace{-0.35cm}g^{2}( x)\cdot f_x(x)\,{\rm d}x.$$
  • This leads to the result:
$$ m_{ 2 y}=\int_{\rm 0}^{\rm 2}\hspace{-0.15cm}\sin^{\rm 4}({\rm \pi}/{\rm 2}\cdot x)\,{\rm d} x= \frac{\rm 3}{\rm 8}\cdot x-\frac{\rm 1}{\rm 2\cdot\pi}\cdot \sin(\rm \pi\cdot{\it x})+\frac{\rm 1}{\rm 16\cdot\pi}\cdot \sin(\rm 2 \pi\cdot {\it x})\Big|_{\rm 0}^{\rm 2} \hspace{0.15cm}{= \rm 0.75}.$$
  • With the result from  (2)  it thus follows for the standard deviation:
$$ \sigma_{y}=\sqrt{\frac{\rm 3}{\rm 4}-\Big(\frac{\rm 8}{\rm 3\cdot\pi}\Big)^{\rm 2}} \hspace{0.15cm}\underline{\approx \rm 0.172}.$$


(4)  Due to the symmetry of the PDF  $f_x(x)$  and the characteristic curve  $y =g(x)$  um  $x = 1$  the two domains yield.

  • $0 \le x \le 1$  and
  • $1 \le x \le 2$


each give the same contribution for $f_y(y)$.

  • In the first domain,  the derivative of the characteristic curve is positive:  $g\hspace{0.05cm}'(x)={\rm \pi}/{\rm 2}\cdot \cos({\rm \pi}/{\rm 2}\cdot x).$
  • The inverse function is:  $ x=h(y)={\rm 2}/{\rm \pi}\cdot \arcsin( y).$
  • Taking into account the second contribution by the factor  $2$  we get the searched PDF in the range  $0 \le y \le 1$:
$$f_y(y)= 2\cdot\frac{\sin^{ 2}({ \pi}/{ 2}\cdot x)}{{ \pi}/{ 2}\cdot \cos({ \pi}/{ 2}\cdot x)}\Big|_{\, x={ 2}/{ \pi}\cdot \arcsin( y)}.$$
PDF after transformation
  • Outside of this range:  $f_y(y) \equiv 0$.  This leads to the intermediate result
$$f_y(y)=\frac{4}{\pi}\cdot \frac{\sin^{2}(\arcsin( y ))}{\sqrt{\rm 1-\sin^{ 2}(\arcsin( y \rm ))}}.$$
  • And because of  $\sin\big (\arcsin(y)\big) = y$:
$$f_y(y)=\frac{ 4}{\pi}\cdot \frac{ y^{2}}{\sqrt{1- y^{\rm 2}}}.$$
  • At the point  $y = 0.6$  one obtains the value  $f_y(y= 0.6)\hspace{0.15cm}\underline{=0.573}$.
  • On the right,  this PDF  $f_y(y)$  is shown graphically.



(5)  The PDF is infinitely large at the point  $y = 1$.

  • This is due to the fact that at this point the derivative  $g\hspace{0.05cm}'(x)$  of the characteristic curve runs horizontally.
  • However,  since  $y$  is a continuous random quantity,  nevertheless  ${\rm Pr}(y = 1) \hspace{0.15cm}\underline{= 0}$  holds.


This means:

  • An infinity point in the PDF is not identical to a Dirac delta function.
  • Or more casually expressed:   An infinity point in the PDF is  "less"  than a Dirac delta function.