Difference between revisions of "Aufgaben:Exercise 5.2: Determination of the Frequency Response"

From LNTwww
 
(5 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:EN_Sto_A_5_2.png|right|frame|Determining the frequency response  $H(f)$]]
+
[[File:EN_Sto_A_5_2_neu2.png|right|frame|Measuring the frequency response  $H(f)$]]
We consider the illustrated measurement setup for the determination of the frequency response  $H(f)$ highlighted in blue.  
+
We consider the illustrated measurement setup for the determination of the frequency response  $H(f)$  highlighted in blue.  
 
*The input signal  $x(t)$  is white Gaussian noise with the noise power density  $N_0 = 10^{-10} \hspace{0.05cm} \rm W/Hz$.  
 
*The input signal  $x(t)$  is white Gaussian noise with the noise power density  $N_0 = 10^{-10} \hspace{0.05cm} \rm W/Hz$.  
*Thus, the auto-correlation function (ACF) is:
+
*Thus,  the auto-correlation function  $\rm (ACF)$  is:
 
:$$\varphi _x ( \tau ) = {N_0 }/{2} \cdot \delta ( \tau  ).$$
 
:$$\varphi _x ( \tau ) = {N_0 }/{2} \cdot \delta ( \tau  ).$$
*The measured cross-correlation function (CCF) between the signals&nbsp; $x(t)$&nbsp; and&nbsp; $y(t)$&nbsp; can be approximated as follows <br>$($valid only for positive times&nbsp; $t)$:
+
*The measured cross-correlation function&nbsp; $\rm (CCF)$&nbsp; between the signals&nbsp; $x(t)$&nbsp; and&nbsp; $y(t)$&nbsp; can be approximated as follows <br>$($valid only for positive times&nbsp; $t)$:
:$$\varphi _{xy} \left( \tau  \right) = K \cdot {\rm{e}}^{ - \tau /T_0 },\hspace{0.5cm}\text{mit } \ K = 0.628 \cdot 10^{-12} \hspace{0.05cm} {\rm W}, \  T_0 = 1 \hspace{0.05cm} \rm ms.$$
+
:$$\varphi _{xy} \left( \tau  \right) = K \cdot {\rm{e}}^{ - \tau /T_0 },\hspace{0.5cm}\text{with } \ K = 0.628 \cdot 10^{-12} \hspace{0.05cm} {\rm W}, \  T_0 = 1 \hspace{0.05cm} \rm ms.$$
 
*The ACF&nbsp; $\varphi_y(\tau)$&nbsp; of the output signal&nbsp; $y(t)$ is also measured.
 
*The ACF&nbsp; $\varphi_y(\tau)$&nbsp; of the output signal&nbsp; $y(t)$ is also measured.
  
Line 15: Line 15:
  
  
 
+
Notes:  
 
 
 
 
 
 
''Notes:''
 
 
*The exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Stochastic_System_Theory|Stochastic System Theory]].
 
*The exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Stochastic_System_Theory|Stochastic System Theory]].
*Reference is also made to the chapter&nbsp;  [[Theory_of_Stochastic_Signals/Leistungsdichtespektrum_(LDS)|Power Density Spectrum]].  
+
*Reference is also made to the chapter&nbsp;  [[Theory_of_Stochastic_Signals/Power-Spectral_Density|Power-Spectral Density]].  
 
 
*Please also note the following Fourier transform&nbsp; $($in&nbsp; $\omega)$:
 
*Please also note the following Fourier transform&nbsp; $($in&nbsp; $\omega)$:
 
:$$H( \omega  ) = \frac{1}{{1 + {\rm{j}}\cdot \omega /\omega _0 }}\hspace{0.15cm}\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\,\hspace{0.15cm}h(t) = \omega _0  \cdot {\rm{e}}^{ - \omega _0 t} \hspace{0.3cm}(t \ge 0).$$
 
:$$H( \omega  ) = \frac{1}{{1 + {\rm{j}}\cdot \omega /\omega _0 }}\hspace{0.15cm}\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\,\hspace{0.15cm}h(t) = \omega _0  \cdot {\rm{e}}^{ - \omega _0 t} \hspace{0.3cm}(t \ge 0).$$
:For negative&nbsp; $t$ values, on the other hand,&nbsp;  $h(t) =0$ at all times.
+
:For negative&nbsp; $t$&ndash;values,&nbsp; on the other hand,&nbsp;  $h(t) =0$&nbsp; at all times.
  
  
Line 49: Line 44:
  
  
{Calculate the power density spectrum of the output signal&nbsp; $y(t)$.&nbsp; What value results for frequency&nbsp; $f = 1/(2\pi T_0)$?
+
{Calculate the power-spectral density of the output signal&nbsp; $y(t)$.&nbsp; What value results for frequency&nbsp; $f = 1/(2\pi T_0)$?
 
|type="{}"}
 
|type="{}"}
 
${\it \Phi}_y(f = 1/(2\pi T_0)) \ =  \ $ { 6.25 3% } $\ \cdot 10^{-12}\  \rm W/Hz$
 
${\it \Phi}_y(f = 1/(2\pi T_0)) \ =  \ $ { 6.25 3% } $\ \cdot 10^{-12}\  \rm W/Hz$
Line 63: Line 58:
 
:$$\varphi _{xy} ( \tau ) = h( \tau ) * \varphi _x ( \tau )\quad  \Rightarrow \quad H( f ) = \frac{{{\it \Phi} _{xy} ( f )}}{{{\it \Phi} _x ( f )}},$$
 
:$$\varphi _{xy} ( \tau ) = h( \tau ) * \varphi _x ( \tau )\quad  \Rightarrow \quad H( f ) = \frac{{{\it \Phi} _{xy} ( f )}}{{{\it \Phi} _x ( f )}},$$
 
:$$\varphi _y ( \tau) = \varphi _{xy} ( \tau) * h(- \tau)\quad  \Rightarrow \quad H^{\star}( f ) = \frac{{{\it \Phi} _y ( f )}}{{{\it \Phi} _{xy} ( f )}}.$$
 
:$$\varphi _y ( \tau) = \varphi _{xy} ( \tau) * h(- \tau)\quad  \Rightarrow \quad H^{\star}( f ) = \frac{{{\it \Phi} _y ( f )}}{{{\it \Phi} _{xy} ( f )}}.$$
*In contrast, the first statement is false: &nbsp; the phase relations are lost in the ACF calculation.
+
*In contrast,&nbsp; the first statement is false: &nbsp; The phase relations are lost in the ACF calculation.
*The associated spectral functions to&nbsp; $\varphi_x(\tau)$&nbsp; and&nbsp; $\varphi_x(\tau)$&nbsp; &ndash; namely&nbsp; ${\it \Phi}_x(f)$&nbsp; and&nbsp;  ${\it \Phi}_y(f)$&nbsp; &ndash; are purely real, so only the magnitude&nbsp; $|H(f)|$&nbsp; can be given.
+
*The associated spectral functions to&nbsp; $\varphi_x(\tau)$&nbsp; and&nbsp; $\varphi_x(\tau)$&nbsp; &ndash; namely&nbsp; ${\it \Phi}_x(f)$&nbsp; and&nbsp;  ${\it \Phi}_y(f)$&nbsp; &ndash; are purely real,&nbsp; so only the magnitude&nbsp; $|H(f)|$&nbsp; can be given.
  
  
  
'''(2)'''&nbsp; For dirac-shaped input ACF&nbsp; $\varphi_x(\tau)$,&nbsp; the impulse response&nbsp; $h(t)$&nbsp; is equal in shape to the CCF:
+
'''(2)'''&nbsp; For Dirac-shaped input ACF&nbsp; $\varphi_x(\tau)$,&nbsp; the impulse response&nbsp; $h(t)$&nbsp; is equal in shape to the CCF:
 
:$$h(t) = \frac{{K \cdot {\rm{e}}^{ - t/T_0 } }}{N_0 /2} = 1.256 \cdot 10^{ - 2} \frac{1}{{\rm{s}}} \cdot {\rm{e}}^{ - t/T_0 } \hspace{0.3cm}\Rightarrow \hspace{0.3cm}h(t = T_0)\hspace{0.15cm}\underline{ = 4.62 \cdot 10^{-3}\ \rm 1/s}.$$
 
:$$h(t) = \frac{{K \cdot {\rm{e}}^{ - t/T_0 } }}{N_0 /2} = 1.256 \cdot 10^{ - 2} \frac{1}{{\rm{s}}} \cdot {\rm{e}}^{ - t/T_0 } \hspace{0.3cm}\Rightarrow \hspace{0.3cm}h(t = T_0)\hspace{0.15cm}\underline{ = 4.62 \cdot 10^{-3}\ \rm 1/s}.$$
  
Line 77: Line 72:
  
 
*The constant results in&nbsp; $C = 0.08$.&nbsp; With&nbsp; $H(f) = 2 \pi \cdot  H(\omega)$&nbsp; it follows:
 
*The constant results in&nbsp; $C = 0.08$.&nbsp; With&nbsp; $H(f) = 2 \pi \cdot  H(\omega)$&nbsp; it follows:
:$$H(f) = \frac{0.5}{1 + {\rm{j\cdot 2\pi }}\cdot fT_0 } \hspace{0.3cm}\Rightarrow \hspace{0.3cm} H(f= 0) \hspace{0.15cm}\underline{=0.5}.$$
+
:$$H(f) = \frac{0.5}{1 + {\rm{j\cdot 2\pi }}\cdot f \cdot T_0 } \hspace{0.3cm}\Rightarrow \hspace{0.3cm} H(f= 0) \hspace{0.15cm}\underline{=0.5}.$$
  
  
  
'''(4)'''&nbsp; For the output PDS, in general, or specifically here:
+
'''(4)'''&nbsp; For the output PSD,&nbsp; in general or specifically here:
:$${\it \Phi}_y (f) = {\it \Phi} _x (f) \cdot \left| {H(f)} \right|^2  = \frac{N_0 }{2} \cdot \frac{0.5^2 }{{\left( {1 + {\rm{j\cdot  2\pi }}\cdot fT_0 } \right)\left( {1 - {\rm{j\cdot 2\pi }}\cdot fT_0 } \right)}} = {N_0 }/{8} \cdot \frac{1}{1 + \left( {{\rm{2\pi }}\cdot fT_0 } \right)^2 }.$$
+
:$${\it \Phi}_y (f) = {\it \Phi} _x (f) \cdot \left| {H(f)} \right|^2  = \frac{N_0 }{2} \cdot \frac{0.5^2 }{{\left( {1 + {\rm{j\cdot  2\pi }}\cdot f \cdot T_0 } \right)\left( {1 - {\rm{j\cdot 2\pi }}\cdot f \cdot T_0 } \right)}} = {N_0 }/{8} \cdot \frac{1}{1 + \left( {{\rm{2\pi }}\cdot f\cdot T_0 } \right)^2 }.$$
  
*At the given frequency&nbsp; $f = 1/(2\pi T_0)$,&nbsp; &nbsp; ${\it \Phi}_y (f)$&nbsp;has dropped by half compared to its maximum at&nbsp; $f=0$&nbsp;:
+
*At the given frequency&nbsp; $f = 1/(2\pi T_0)$,&nbsp; &nbsp; ${\it \Phi}_y (f)$&nbsp; has dropped by half compared to its maximum at $f=0$&nbsp;:
 
:$${\it \Phi}_y (f = 1/(2 \pi T_0)) ={N_0 }/{16}\hspace{0.15cm} \underline{ = 6.25 \cdot 10^{ - 12} \;{\rm{W/Hz}}}.$$
 
:$${\it \Phi}_y (f = 1/(2 \pi T_0)) ={N_0 }/{16}\hspace{0.15cm} \underline{ = 6.25 \cdot 10^{ - 12} \;{\rm{W/Hz}}}.$$
  

Latest revision as of 16:54, 22 February 2022

Measuring the frequency response  $H(f)$

We consider the illustrated measurement setup for the determination of the frequency response  $H(f)$  highlighted in blue.

  • The input signal  $x(t)$  is white Gaussian noise with the noise power density  $N_0 = 10^{-10} \hspace{0.05cm} \rm W/Hz$.
  • Thus,  the auto-correlation function  $\rm (ACF)$  is:
$$\varphi _x ( \tau ) = {N_0 }/{2} \cdot \delta ( \tau ).$$
  • The measured cross-correlation function  $\rm (CCF)$  between the signals  $x(t)$  and  $y(t)$  can be approximated as follows
    $($valid only for positive times  $t)$:
$$\varphi _{xy} \left( \tau \right) = K \cdot {\rm{e}}^{ - \tau /T_0 },\hspace{0.5cm}\text{with } \ K = 0.628 \cdot 10^{-12} \hspace{0.05cm} {\rm W}, \ T_0 = 1 \hspace{0.05cm} \rm ms.$$
  • The ACF  $\varphi_y(\tau)$  of the output signal  $y(t)$ is also measured.



Notes:

$$H( \omega ) = \frac{1}{{1 + {\rm{j}}\cdot \omega /\omega _0 }}\hspace{0.15cm}\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\,\hspace{0.15cm}h(t) = \omega _0 \cdot {\rm{e}}^{ - \omega _0 t} \hspace{0.3cm}(t \ge 0).$$
For negative  $t$–values,  on the other hand,  $h(t) =0$  at all times.


Questions

1

Which of the following statements is true?  One can completely determine the frequency response  $H(f)$  by magnitude and phase if

the functions  $\varphi_x(\tau)$  and  $\varphi_y(\tau)$  are known,
the functions  $\varphi_x(\tau)$  and  $\varphi_{xy}(\tau)$  are known,
the functions  $\varphi_{xy}(\tau)$  and  $\varphi_y(\tau)$  are known.

2

Calculate the impulse response  $h(t)$.  What is the value for  $t=T_0$?

$h(t = T_0) \ = \ $

$\ \cdot 10^{-3} \ \rm 1/s$

3

What is the frequency response  $H(f)$?  What value results for $f= 0$?

$H(f = 0) \ = \ $

4

Calculate the power-spectral density of the output signal  $y(t)$.  What value results for frequency  $f = 1/(2\pi T_0)$?

${\it \Phi}_y(f = 1/(2\pi T_0)) \ = \ $

$\ \cdot 10^{-12}\ \rm W/Hz$


Solution

(1)  Statements 2 and 3 are true.

  • The following equations are valid:
$$\varphi _{xy} ( \tau ) = h( \tau ) * \varphi _x ( \tau )\quad \Rightarrow \quad H( f ) = \frac{{{\it \Phi} _{xy} ( f )}}{{{\it \Phi} _x ( f )}},$$
$$\varphi _y ( \tau) = \varphi _{xy} ( \tau) * h(- \tau)\quad \Rightarrow \quad H^{\star}( f ) = \frac{{{\it \Phi} _y ( f )}}{{{\it \Phi} _{xy} ( f )}}.$$
  • In contrast,  the first statement is false:   The phase relations are lost in the ACF calculation.
  • The associated spectral functions to  $\varphi_x(\tau)$  and  $\varphi_x(\tau)$  – namely  ${\it \Phi}_x(f)$  and  ${\it \Phi}_y(f)$  – are purely real,  so only the magnitude  $|H(f)|$  can be given.


(2)  For Dirac-shaped input ACF  $\varphi_x(\tau)$,  the impulse response  $h(t)$  is equal in shape to the CCF:

$$h(t) = \frac{{K \cdot {\rm{e}}^{ - t/T_0 } }}{N_0 /2} = 1.256 \cdot 10^{ - 2} \frac{1}{{\rm{s}}} \cdot {\rm{e}}^{ - t/T_0 } \hspace{0.3cm}\Rightarrow \hspace{0.3cm}h(t = T_0)\hspace{0.15cm}\underline{ = 4.62 \cdot 10^{-3}\ \rm 1/s}.$$


(3)  The Fourier correspondence given is with  $T_0 = 1/\omega_0$  and the constant  $C= N_0/2 \cdot T_0/K$:

$$h(t) = \frac{C}{T_0 } \cdot {\rm{e}}^{ - t/T_0 }\hspace{0.15cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\hspace{0.15cm} H( \omega ) = \frac{C}{{1 + {\rm{j}}\cdot \omega T_0 }}.$$
  • The constant results in  $C = 0.08$.  With  $H(f) = 2 \pi \cdot H(\omega)$  it follows:
$$H(f) = \frac{0.5}{1 + {\rm{j\cdot 2\pi }}\cdot f \cdot T_0 } \hspace{0.3cm}\Rightarrow \hspace{0.3cm} H(f= 0) \hspace{0.15cm}\underline{=0.5}.$$


(4)  For the output PSD,  in general or specifically here:

$${\it \Phi}_y (f) = {\it \Phi} _x (f) \cdot \left| {H(f)} \right|^2 = \frac{N_0 }{2} \cdot \frac{0.5^2 }{{\left( {1 + {\rm{j\cdot 2\pi }}\cdot f \cdot T_0 } \right)\left( {1 - {\rm{j\cdot 2\pi }}\cdot f \cdot T_0 } \right)}} = {N_0 }/{8} \cdot \frac{1}{1 + \left( {{\rm{2\pi }}\cdot f\cdot T_0 } \right)^2 }.$$
  • At the given frequency  $f = 1/(2\pi T_0)$,    ${\it \Phi}_y (f)$  has dropped by half compared to its maximum at $f=0$ :
$${\it \Phi}_y (f = 1/(2 \pi T_0)) ={N_0 }/{16}\hspace{0.15cm} \underline{ = 6.25 \cdot 10^{ - 12} \;{\rm{W/Hz}}}.$$