Difference between revisions of "Aufgaben:Exercise 4.13Z: AMI Code"

From LNTwww
Line 89: Line 89:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  Der diskrete AKF-Wert für  $k = 0$  gibt den quadratischen Mittelwert (hier gleich der Varianz) der Quellensymbole an.  
+
'''(1)'''  The discrete ACF value for  $k = 0$  gives the root mean square (here equal to the variance) of the source symbols.  
*Da  $q_\nu$  nur die Werte  $-1$  und  $+1$  annehmen kann, ist  $\varphi_q(k=0)\hspace{0.15cm}\underline{= 1}$.
+
*Since  $q_\nu$  can only take the values  $-1$  and  $+1$  ,  $\varphi_q(k=0)\hspace{0.15cm}\underline{= 1}$.
  
  
  
'''(2)'''&nbsp; Richtig sind <u>die Lösungsvorschläge 1 und 3</u>:
+
'''(2)'''&nbsp; Correct are <u>the proposed solutions 1 and 3</u>:
*Die zeitdiskrete AKF und deren Fouriertransformierte lauten:
+
*The discrete-time ACF and its Fourier transform are:
 
:$${\rm A} \{ \varphi_q ( \tau ) \} =  \varphi_q ( k = 0) \cdot T \cdot \delta (\tau) \hspace{0.3cm} \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.3cm} {\rm P} \{{\it \Phi_q}( f) \} =  \varphi_q ( k = 0) \cdot T = T.$$
 
:$${\rm A} \{ \varphi_q ( \tau ) \} =  \varphi_q ( k = 0) \cdot T \cdot \delta (\tau) \hspace{0.3cm} \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.3cm} {\rm P} \{{\it \Phi_q}( f) \} =  \varphi_q ( k = 0) \cdot T = T.$$
*Es ist ber&uuml;cksichtigt, dass&nbsp; $\varphi_q(k=0)= \sigma_q^2= 1$&nbsp; ist.&nbsp; Das bedeutet: &nbsp;  
+
*It is considered that&nbsp; $\varphi_q(k=0)= \sigma_q^2= 1$&nbsp; This means: &nbsp;  
:Die periodische Fortsetzung von&nbsp; ${\rm P} \{ {\it \Phi}_q(f) \}$&nbsp; ergibt somit f&uuml;r alle Frequenzen den gleichen Wert.
+
:The periodic continuation of&nbsp; ${\rm P} \{ {\it \Phi}_q(f) \}$&nbsp; thus gives the same value for all frequencies.
*Dagegen kann die zeitkontinuierliche AKF wie folgt dargestellt werden: &nbsp;  
+
*In contrast, the continuous-time ACF can be represented as follows: &nbsp;  
:$$ \varphi_q ( \tau ) = {\rm A} \{ \varphi_q ( \tau ) \} \star ( {\rm \Delta} ( \tau) / T ).$$
+
:$$ \varphi_q ( \tau ) = {\rm A} \{ \varphi_q ( \tau ) \} \star ( {\rm \delta} ( \tau) / T ).$$
*Das dazugeh&ouml;rige Leistungsdichtespektrum (Fouriertransformierte der AKF) ist dann das Produkt der Fouriertransformierten der beiden Faltungsterme: &nbsp;  
+
*The associated Power spectral density spectrum (Fourier transform of the ACF) is then the product of the Fourier transforms of the two convolution terms: &nbsp;  
:$$ {\it \Phi_q} ( f) = {\rm P} \{ {\it \Phi_q}( f) \} \cdot {\rm si}^2 (\pi f T ) = T \cdot {\rm si}^2 (\pi f T ) .$$
+
:$$ {\it \Phi_q} ( f) = {\rm P} \{ {\it \Phi_q}( f) \} \cdot {\rm si}^2 (\pi f T ) = T \cdot {\rm si}^2 (\pi f T ) .$$
*Aufgrund der gew&auml;hlten AKF-Interpolation (mit Geradenabschnitten) aus ihren Abtastwerten ergibt sich ein&nbsp; $\rm si^2$-f&ouml;rmiges LDS.  
+
*Based on the chosen ACF interpolation (with straight line intercepts) from their samples, a&nbsp; $\rm si^2$-shaped PSD is obtained.  
*Ein rechteckförmiges Spektrum gemäß L&ouml;sungsvorschlag&nbsp; '''(2)'''&nbsp; w&uuml;rde sich nur bei&nbsp; $\rm si$-f&ouml;rmiger Interpolation einstellen.  
+
*A rectangular spectrum according to the proposed solution&nbsp; '''(2)'''&nbsp; would only occur with&nbsp; $\rm si$-shaped interpolation.  
  
  
  
'''(3)'''&nbsp; Die codierte Folge lautet: &nbsp; $\langle +1, \ 0, -1, +1, \ 0, -1, +1, \ 0, \ 0, \ 0 \rangle$.&nbsp; Das 6. Symbol ist somit&nbsp; $c_6\hspace{0.15cm}\underline{= -1}$.
+
'''(3)'''&nbsp; The coded sequence is: &nbsp; $\langle +1, \ 0, -1, +1, \ 0, -1, +1, \ 0, \ 0, \ 0 \rangle$.&nbsp; Thus the 6th symbol is&nbsp; $c_6\hspace{0.15cm}\underline{= -1}$.
  
  
'''(4)'''&nbsp; Die Auftrittswahrscheinlichkeiten der Werte&nbsp; $-1$&nbsp;, $\ 0$&nbsp; und $+1$&nbsp; sind&nbsp; $0.25, 0.5, 0.25$.&nbsp; Daraus folgt:
+
'''(4)'''&nbsp; The probabilities of occurrence of the values&nbsp; $-1$&nbsp;, $\ 0$&nbsp; and $+1$&nbsp; are&nbsp; $0.25, 0.5, 0.25$.&nbsp; It follows:
 
:$$\varphi_c ( k = 0) = 0.25 \cdot (-1)^2 + 0.5 \cdot 0^2 +0.25 \cdot (+1)^2\hspace{0.15cm}\underline{ = 0.5}. $$
 
:$$\varphi_c ( k = 0) = 0.25 \cdot (-1)^2 + 0.5 \cdot 0^2 +0.25 \cdot (+1)^2\hspace{0.15cm}\underline{ = 0.5}. $$
  
  
'''(5)'''&nbsp; F&uuml;r den AKF-Wert bei&nbsp; $k = 1$&nbsp; betrachtet man das Produkt&nbsp; $c_{\nu} \cdot c_{\nu+1}$.&nbsp; Es ergeben sich die rechts gezeigten Kombinationen.  
+
'''(5)'''&nbsp; For the ACF value at&nbsp; $k = 1$&nbsp; consider the product&nbsp; $c_{\nu} \cdot c_{\nu+1}$.&nbsp; The combinations shown on the right are obtained.  
*Einen Beitrag liefern nur Produkte&nbsp; $c_{\nu} \cdot c_{\nu+1} \ne 0$&nbsp; mit&nbsp; ${\rm Pr}\big[c_{\nu} \cdot c_{\nu+1}\big] \ne 0$:
+
*Only products&nbsp; $c_{\nu} \cdot c_{\nu+1} \ne 0$&nbsp; with&nbsp; ${\rm Pr}\big[c_{\nu} \cdot c_{\nu+1}\big] \ne 0$:
 
:$$\varphi_c ( k = 1) = {\rm Pr} \big [( c_{\nu} = +1) \cap ( c_{\nu + 1} = -1) \big ] \cdot (+1) \cdot (-1) + {\rm Pr} \big [ ( c_{\nu} = -1) \cap ( c_{\nu + 1} = +1) \big ] \cdot (-1) \cdot (+1).$$
 
:$$\varphi_c ( k = 1) = {\rm Pr} \big [( c_{\nu} = +1) \cap ( c_{\nu + 1} = -1) \big ] \cdot (+1) \cdot (-1) + {\rm Pr} \big [ ( c_{\nu} = -1) \cap ( c_{\nu + 1} = +1) \big ] \cdot (-1) \cdot (+1).$$
[[File:P_ID428__Sto_Z_4_13_e.png|right|frame|Zur AKF-Berechnung des AMI-Codes]]
+
[[File:P_ID428__Sto_Z_4_13_e.png|right|frame|For ACF calculation of AMI code]]
*In der Tabelle sind diese Terme rot gekennzeichnet. Weiter gilt:
+
*In the table, these terms are marked in red. Further:
 
:$$ {\rm Pr} \big [ ( c_{\nu} = +1) \cap ( c_{\nu + 1} = -1) \big ] = $$
 
:$$ {\rm Pr} \big [ ( c_{\nu} = +1) \cap ( c_{\nu + 1} = -1) \big ] = $$
:$$ = {\rm Pr} ( c_{\nu} = +1) \cdot {\rm Pr} \left ( c_{\nu + 1} = -1 | c_{\nu } = +1) \right ) = \frac{1}{4} \cdot \frac{1}{2}= \frac{1}{8} . $$
+
:$$ = {\rm Pr} ( c_{\nu} = +1) \cdot {\rm Pr} \left ( c_{\nu + 1} = -1 | c_{\nu } = +1) \right ) = \frac{1}{4} \cdot \frac{1}{2}= \frac{1}{8} . $$
:Hierbei ist vorausgesetzt, dass&nbsp; $+1$&nbsp; mit der Wahrscheinlichkeit&nbsp; $0.25$&nbsp; auftritt und danach&nbsp; $-1$&nbsp; nur in der H&auml;lfte der F&auml;lle folgt.  
+
:Here it is assumed that&nbsp; $+1$&nbsp; occurs with probability&nbsp; $0.25$&nbsp; and is followed by&nbsp; $-1$&nbsp; only in half of the cases.  
  
*Das gleiche Ergebnis erh&auml;lt man f&uuml;r den zweiten Beitrag. Damit gilt:
+
*The same result is obtained for the second contribution. Thus applies:
:$$\varphi_c ( k = 1) = \frac {1}{8} \cdot (+1)\cdot (-1) + \frac {1}{8} \cdot (-1)\cdot (+1) \hspace{0.15cm}\underline{= -0.25}.$$
+
$$varphi_c ( k = 1) = \frac {1}{8} \cdot (+1)\cdot (-1) + \frac {1}{8} \cdot (-1)\cdot (+1) \hspace{0.15cm}\underline{= -0.25}.$$
 
:$$\varphi_c ( k = -1) = \varphi_c ( k = 1) \hspace{0.15cm}\underline{= -0.25}.$$
 
:$$\varphi_c ( k = -1) = \varphi_c ( k = 1) \hspace{0.15cm}\underline{= -0.25}.$$
*Zur Berechnung von&nbsp; $\varphi_c ( k = 2)$&nbsp; muss &uuml;ber&nbsp; $3^3 = 27$&nbsp; Kombinationen gemittelt werden. Das Ergebnis ist Null.
+
*To calculate&nbsp; $\varphi_c ( k = 2)$&nbsp; it is necessary to average over&nbsp; $3^3 = 27$&nbsp; combinations. The result is zero.
  
  
  
'''(6)'''&nbsp; Die Fouriertransformierte der zeitdiskreten AKF&nbsp; ${\rm A} \{ \varphi_c(\tau) \}$&nbsp; lautet:
+
'''(6)'''&nbsp; The Fourier transform of the discrete-time ACF&nbsp; ${\rm A} \{ \varphi_c(\tau) \}$&nbsp; is:
 
:$$P \{{\it \Phi_c}( f) \} =  T\cdot  \varphi_c ( k = 0) +2T \cdot \varphi_c ( k = 1) \cdot {\rm cos} ( 2 \pi f T ).$$
 
:$$P \{{\it \Phi_c}( f) \} =  T\cdot  \varphi_c ( k = 0) +2T \cdot \varphi_c ( k = 1) \cdot {\rm cos} ( 2 \pi f T ).$$
  
*Mit dem Ergebnis der letzten Teilaufgabe folgt daraus:
+
*With the result of the last subtask, it follows:
 
:$$P \{{\it \Phi}_c( f) \} =  \frac {T}{2} (1 - {\rm cos} ( 2 \pi f T ) )= T \cdot {\rm sin}^2 ( \pi f T ).$$
 
:$$P \{{\it \Phi}_c( f) \} =  \frac {T}{2} (1 - {\rm cos} ( 2 \pi f T ) )= T \cdot {\rm sin}^2 ( \pi f T ).$$
  
*Wie unter Punkt&nbsp; '''(2)''' gezeigt, gilt dann f&uuml;r das LDS &ndash; also die Fouriertransformierte von&nbsp; $\varphi_c(\tau)$:
+
*As shown in item&nbsp; '''(2)''', then, for the PSD &ndash; that is, the Fourier transform of&nbsp; $\varphi_c(\tau)$:
:$${\it \Phi_c}( f) = T \cdot {\rm sin}^2 ( \pi f T ) \cdot {\rm si}^2 ( \pi f T ) = T \cdot \frac {{\rm sin}^4 ( \pi f T )}{( \pi f T )^2 } .$$
+
:$${\it \Phi_c}( f) = T \cdot {\rm sin}^2 ( \pi f T ) \cdot {\rm si}^2 ( \pi f T ) = T \cdot \frac {{\rm sin}^4 ( \pi f T )}{( \pi f T )^2 } .$$
:$$\Rightarrow \hspace{0.3cm} {\it \Phi_c}( f = 0) \hspace{0.15cm}\underline{= 0}, \hspace{0.8cm}
+
:$$\Rightarrow \hspace{0.3cm} {\it \Phi_c}( f = 0) \hspace{0.15cm}\underline{= 0}, \hspace{0.8cm}
{\it \Phi_c}( f = {\rm500 \hspace{0.1cm}kHz}) = T \cdot \frac {{\rm sin}^4 ( \pi /2 )}{( \pi /2 )^2 } = \frac {4 T}{\pi^2} \rm \hspace{0.15cm}\underline{= 0.405 \cdot 10^{-6} \ {1}/{Hz}}.$$
+
{\it \Phi_c}( f = {\rm500 \hspace{0.1cm}kHz}) = T \cdot \frac {{\rm sin}^4 ( \pi /2 )}{( \pi /2 )^2 } = \frac {4 T}{\pi^2} \rm \hspace{0.15cm}\underline{= 0.405 \cdot 10^{-6} \ {1}/{Hz}}.$$
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 21:03, 7 March 2022

ACF at AMI coding

For spectral adaptation (shaping) of a digital signal to the characteristics of the channel, one uses so-called  pseudo-ternary codes.  In these codes, the binary source symbol sequence  $\langle q_\nu \rangle$  is converted to a sequence  $\langle c_\nu \rangle$  of ternary symbols according to a fixed rule:

$$q_{\nu} \in \{ -1,\hspace{0.1cm} +1 \} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} c_{\nu} \in \{ -1, \hspace{0.1cm}0, \hspace{0.1cm}+1 \} .$$

The best known representative of this code class is the AMI code (from Alternate Mark Inversion).  Here.

  • the binary value  $q_\nu = -1$  is always mapped to  $c_\nu = 0$ ,
  • while  $q_\nu = +1$  is alternately represented by the ternary values  $c_\nu = +1$  and  $c_\nu = -1$ .


By convention, the ternary symbol  $c_\nu = +1$  shall be selected at the first occurrence of  $q_\nu = +1$ .

It is further assumed that

  • the two possible source symbols are each equally probable and
  • the source symbol sequence  $\langle q_\nu \rangle $ has no internal statistical bindings.


Thus, all discrete ACF values are zero except  $\varphi_q(k=0)$:

$$\varphi_q ( k \cdot T) = 0 \hspace{0.5cm} {\rm f alls} \hspace{0.5cm} k \not= 0.$$

Here  $T$  denotes the distance between sources– or code symbols.  Use the value  $T = 1 \hspace{0.05cm} \rm µ s$.

The figure shows the given auto-correlation functions.  Please note:

  • In red are respectively the discrete-time representations  ${\rm A} \{ \varphi_q(\tau) \}$  and  ${\rm A} \{ \varphi_c(\tau) \}$  of the auto-correlation functions, each with the reference value  $T$.
  • The functions shown in blue indicate the continuous-time progressions  $\varphi_q(\tau)$  and  $\varphi_c(\tau)$  of the ACF, assuming square-wave pulses.




Hints:

  • Benutzen Sie die folgende Fourierkorrespondenz, wobei  ${\rm \Delta} (t)$  einen um  $t = 0$  symmetrischen Dreieckimpuls mit  ${\rm \Delta} (t= 0) = 1$  und  ${\rm \Delta} (t) = 0$  für  $|t| \ge T$  bezeichnet:
$${\rm \Delta} (t) \hspace{0.3cm} \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.3cm} T \cdot {\rm si}^2 ( \pi f T).$$


Questions

1

What is the discrete ACF–value of the source symbols for  $k = 0$?

$\varphi_q(k=0) \ = \ $

2

Which statements are valid for the PSD–functions  ${\it \Phi}_q(f)$  and  ${\rm P} \{ {\it \Phi}_q(f) \}$?

${\rm P} \{ {\it \Phi}_q(f) \}$  is a constant for all frequencies.
${\it \Phi}_q(f)$  is constant for  $|f \cdot T| < 0.5$  and outside zero.
${\it \Phi}_q(f)$  proceeds  $\rm si^2$-shaped.

3

The source symbol sequence is  $\langle q_\nu \rangle = \langle +1, -1, +1, +1, -1, +1, +1, -1, -1, -1 \rangle$.
What are the code symbols  $c_\nu$ ? Enter the code symbol  $c_6$ .

$c_6 \ = \ $

4

What is the discrete ACF–value of the code symbols for  $k = 0$.

$\varphi_c(k=0) \ = \ $

5

Calculate the ACF values  $\varphi_c(k=+1)$  and  $\varphi_c(k=-1)$.

$\varphi_c(k=+1) \ = \ $

$\varphi_c(k=-1) \ = \ $

6

What power spectral density  ${\it \Phi}_c(f)$  results for frequency $f=0$ or for $f = 500 \hspace{0.08cm} \rm kHz$.   Note:   For  $|k| \ge 2$  all ACF–values  $\varphi_c(k) are \equiv 0$.

${\it \Phi}_c(f = 0) \ = \ $

$\ \cdot 10^{-6} \ \rm 1/Hz$
${\it \Phi}_c(f = 500 \hspace{0.08cm} \rm kHz)\ = \ $

$\ \cdot 10^{-6} \ \rm 1/Hz$
$c_6 \ = \ $


Solution

(1)  The discrete ACF value for  $k = 0$  gives the root mean square (here equal to the variance) of the source symbols.

  • Since  $q_\nu$  can only take the values  $-1$  and  $+1$  ,  $\varphi_q(k=0)\hspace{0.15cm}\underline{= 1}$.


(2)  Correct are the proposed solutions 1 and 3:

  • The discrete-time ACF and its Fourier transform are:
$${\rm A} \{ \varphi_q ( \tau ) \} = \varphi_q ( k = 0) \cdot T \cdot \delta (\tau) \hspace{0.3cm} \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.3cm} {\rm P} \{{\it \Phi_q}( f) \} = \varphi_q ( k = 0) \cdot T = T.$$
  • It is considered that  $\varphi_q(k=0)= \sigma_q^2= 1$  This means:  
The periodic continuation of  ${\rm P} \{ {\it \Phi}_q(f) \}$  thus gives the same value for all frequencies.
  • In contrast, the continuous-time ACF can be represented as follows:  
$$ \varphi_q ( \tau ) = {\rm A} \{ \varphi_q ( \tau ) \} \star ( {\rm \delta} ( \tau) / T ).$$
  • The associated Power spectral density spectrum (Fourier transform of the ACF) is then the product of the Fourier transforms of the two convolution terms:  
$$ {\it \Phi_q} ( f) = {\rm P} \{ {\it \Phi_q}( f) \} \cdot {\rm si}^2 (\pi f T ) = T \cdot {\rm si}^2 (\pi f T ) .$$
  • Based on the chosen ACF interpolation (with straight line intercepts) from their samples, a  $\rm si^2$-shaped PSD is obtained.
  • A rectangular spectrum according to the proposed solution  (2)  would only occur with  $\rm si$-shaped interpolation.


(3)  The coded sequence is:   $\langle +1, \ 0, -1, +1, \ 0, -1, +1, \ 0, \ 0, \ 0 \rangle$.  Thus the 6th symbol is  $c_6\hspace{0.15cm}\underline{= -1}$.


(4)  The probabilities of occurrence of the values  $-1$ , $\ 0$  and $+1$  are  $0.25, 0.5, 0.25$.  It follows:

$$\varphi_c ( k = 0) = 0.25 \cdot (-1)^2 + 0.5 \cdot 0^2 +0.25 \cdot (+1)^2\hspace{0.15cm}\underline{ = 0.5}. $$


(5)  For the ACF value at  $k = 1$  consider the product  $c_{\nu} \cdot c_{\nu+1}$.  The combinations shown on the right are obtained.

  • Only products  $c_{\nu} \cdot c_{\nu+1} \ne 0$  with  ${\rm Pr}\big[c_{\nu} \cdot c_{\nu+1}\big] \ne 0$:
$$\varphi_c ( k = 1) = {\rm Pr} \big [( c_{\nu} = +1) \cap ( c_{\nu + 1} = -1) \big ] \cdot (+1) \cdot (-1) + {\rm Pr} \big [ ( c_{\nu} = -1) \cap ( c_{\nu + 1} = +1) \big ] \cdot (-1) \cdot (+1).$$
For ACF calculation of AMI code
  • In the table, these terms are marked in red. Further:
$$ {\rm Pr} \big [ ( c_{\nu} = +1) \cap ( c_{\nu + 1} = -1) \big ] = $$
$$ = {\rm Pr} ( c_{\nu} = +1) \cdot {\rm Pr} \left ( c_{\nu + 1} = -1 | c_{\nu } = +1) \right ) = \frac{1}{4} \cdot \frac{1}{2}= \frac{1}{8} . $$
Here it is assumed that  $+1$  occurs with probability  $0.25$  and is followed by  $-1$  only in half of the cases.
  • The same result is obtained for the second contribution. Thus applies:

$$varphi_c ( k = 1) = \frac {1}{8} \cdot (+1)\cdot (-1) + \frac {1}{8} \cdot (-1)\cdot (+1) \hspace{0.15cm}\underline{= -0.25}.$$

$$\varphi_c ( k = -1) = \varphi_c ( k = 1) \hspace{0.15cm}\underline{= -0.25}.$$
  • To calculate  $\varphi_c ( k = 2)$  it is necessary to average over  $3^3 = 27$  combinations. The result is zero.


(6)  The Fourier transform of the discrete-time ACF  ${\rm A} \{ \varphi_c(\tau) \}$  is:

$$P \{{\it \Phi_c}( f) \} = T\cdot \varphi_c ( k = 0) +2T \cdot \varphi_c ( k = 1) \cdot {\rm cos} ( 2 \pi f T ).$$
  • With the result of the last subtask, it follows:
$$P \{{\it \Phi}_c( f) \} = \frac {T}{2} (1 - {\rm cos} ( 2 \pi f T ) )= T \cdot {\rm sin}^2 ( \pi f T ).$$
  • As shown in item  (2), then, for the PSD – that is, the Fourier transform of  $\varphi_c(\tau)$:
$${\it \Phi_c}( f) = T \cdot {\rm sin}^2 ( \pi f T ) \cdot {\rm si}^2 ( \pi f T ) = T \cdot \frac {{\rm sin}^4 ( \pi f T )}{( \pi f T )^2 } .$$
$$\Rightarrow \hspace{0.3cm} {\it \Phi_c}( f = 0) \hspace{0.15cm}\underline{= 0}, \hspace{0.8cm} {\it \Phi_c}( f = {\rm500 \hspace{0.1cm}kHz}) = T \cdot \frac {{\rm sin}^4 ( \pi /2 )}{( \pi /2 )^2 } = \frac {4 T}{\pi^2} \rm \hspace{0.15cm}\underline{= 0.405 \cdot 10^{-6} \ {1}/{Hz}}.$$