Difference between revisions of "Aufgaben:Exercise 3.5: PM and FM for Rectangular Signals"

From LNTwww
m
m
Line 21: Line 21:
  
  
''Hinweise:''
+
''Hints:''
*Die Aufgabe gehört zum  Kapitel  [[Modulation_Methods/Frequenzmodulation_(FM)|Frequenzmodulation]].
+
*This exercise belongs to the chapter  [[Modulation_Methods/Frequency_Modulation_(FM)|Frequency Modulation]].
*Bezug genommen wird aber auch auf das Kapitel   [[Modulation_Methods/Phasenmodulation_(PM)|Phasenmodulation]].
+
*Reference is also made to the chapter   [[Modulation_Methods/Phase_Modulation_(PM)|Phase Modulation]].
 
   
 
   
*Im Vorgriff auf das vierte Kapitel sei erwähnt, dass man die Phasenmodulation bei digitalem Eingangssignal auch als ''Phase Shift Keying''  $\rm (PSK)$  und entsprechend die Frequenzmodulation als ''Frequency Shift Keying''  $\rm (FSK)$  bezeichnet.
+
*In anticipation of the fourth chapter, it should be mentioned that phase modulation with a digital input signal is also called ''Phase Shift Keying''  $\rm (PSK)$  and correspondingly frequency modulation is called ''Frequency Shift Keying''  $\rm (FSK)$ .
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>

Revision as of 12:57, 17 March 2022

Zwei Signalverläufe bei Winkelmodulation

Assume a bipolar and rectangular source signal $q(t)$ , as shown in the upper diagram.  This signal can only take on the two signal values  $±A = ±2 \ \rm V$  and the duration of the positive and negative rectangles are each $T = 1 \ \rm ms$.  The period of  $q(t)$  is therefore  $T_0 = 2 \ \rm ms$.

The signals $s_1(t)$  and  $s_2(t)$  display two transmit signals with angle modulation  $\rm (WM)$, each of which can be represented as

$$s(t) = A_{\rm T} \cdot \cos \hspace{-0.05cm}\big [\psi (t) \big ]$$

Here, we distinguish between phase modulation  $\rm (PM)$  with the angular function

$$\psi(t) = \omega_{\rm T} \cdot t + \phi(t) = \omega_{\rm T} \cdot t + K_{\rm PM} \cdot q(t)$$

and frequency modulation  $\rm (FM)$, where the instantaneous freqiency is linearly related to $q(t)$:

$$f_{\rm A}(t) = \frac{\omega_{\rm A}(t)}{2\pi}, \hspace{0.3cm} \omega_{\rm A}(t) = \frac{{\rm d}\hspace{0.03cm}\psi(t)}{{\rm d}t}= \omega_{\rm T} + K_{\rm FM} \cdot q(t)\hspace{0.05cm}.$$

$K_{\rm PM}$  and  $K_{\rm FM}$  denote the dimensionally constrained constants given by the realizations of the PM and FM modulators, respectively.  The frequency deviation  $Δf_{\rm A}$  indicates the maximum deviation of the instantaneous frequency from the carrier frequency.





Hints:

  • In anticipation of the fourth chapter, it should be mentioned that phase modulation with a digital input signal is also called Phase Shift Keying  $\rm (PSK)$  and correspondingly frequency modulation is called Frequency Shift Keying  $\rm (FSK)$ .


Questions

1

Welches der Signale ist durch Phasenmodulation, welches durch Frequenzmodulation entstanden?

$s_1(t)$  beschreibt eine Phasenmodulation.
$s_1(t)$  beschreibt eine Frequenzmodulation.

2

Wie groß ist die Trägerphase  $ϕ_{\rm T}$, die man ohne Nachrichtensignal   ⇒   $q(t) \equiv 0$  messen könnte?

$ϕ_{\rm T} \ = \ $

$\ \rm Grad$

3

Welche Trägerfrequenz  $($bezogen auf  $1/T)$  wurde bei den Grafiken verwendet?

$f_{\rm T} · T \ = \ $

4

Die Phase des PM–Signals ist  $±90^\circ$.  Wie groß ist die Modulatorkonstante?

$K_{\rm PM} \ = \ $

$\ \rm V^{-1}$

5

Wie groß ist der Frequenzhub  $Δf_{\rm A}$  des FM–Signals, bezogen auf  $1/T$?

$Δf_{\rm A} · T \ = \ $

6

Wie groß ist die FM–Modulatorkonstante?

$K_{\rm FM} \ = \ $

$\ \rm (Vs)^{-1}$


Musterlösung

(1)  Richtig ist die Antwort 2:

  • Bei einem rechteckförmigen (digitalen) Quellensignal erkennt man die Phasenmodulation (PM) an den typischen Phasensprüngen – siehe Signalverlauf  $s_2(t)$.
  • Die Frequenzmodulation (FM) hat dagegen zu den verschiedenen Zeiten unterschiedliche Augenblicksfrequenzen wie bei  $s_1(t)$.


(2)  Mit  $q(t) = 0$  erhält man entsprechend den gegebenen Gleichungen sowohl für PM als auch für FM

$$s(t) = A_{\rm T} \cdot \cos (\omega_{\rm T} \cdot t ) \hspace{0.3cm}\Rightarrow\hspace{0.3cm} \phi_{\rm T} \hspace{0.15cm}\underline {= 0}\hspace{0.05cm}.$$


(3)  Die Trägerfrequenz  $f_{\rm T}$  kann direkt nur aus dem PM–Signal  $s_2(t)$  ermittelt werden.

  • Durch Abzählen der Schwingungen von  $s_2(t)$  im Zeitintervall  $T$  erkennt man, dass  $f_{\rm T} · T\hspace{0.15cm}\underline{ = 6}$  verwendet wurde.
  • Bei der Frequenzmodulation eines bipolaren Quellensignals tritt  $f_{\rm T}$  nicht direkt auf.
  • Die Grafiken lassen allerdings darauf schließen, dass hier ebenfalls  $f_{\rm T} · T = 6$  zugrunde liegt.



(4)  Der Amplitudenwert  $A = 2 \ \rm V$  führt zur Phase  $90^\circ$  bzw.  $π/2$  (Minus–Sinusverlauf).  Daraus folgt:

$$K_{\rm PM} = \frac {\pi /2}{2\,{\rm V}} \hspace{0.15cm}\underline {= 0.785\,{\rm V}^{-1}} \hspace{0.05cm}.$$


(5)  Die Grafik für  $s_1(t)$  zeigt, dass innerhalb eines Zeitintervalls  $T$  entweder vier oder acht Schwingungen auftreten:   $4 \le f_{\rm A}(t) \cdot T \le 8\hspace{0.05cm}.$

  • Unter Berücksichtigung der (normiertern) Trägerfrequenz  $f_{\rm T} · T = 6$  ergibt sich für den (normierten) Frequenzhub:
$$\Delta f_{\rm A} \cdot T \hspace{0.15cm}\underline {=2}\hspace{0.05cm}.$$


(6)  Der Frequenzhub kann auch wie folgt dargestellt werden:

$$\Delta f_{\rm A} = \frac {K_{\rm FM}}{2\pi}\cdot A \hspace{0.05cm}.$$
  • Mit  $Δf_{\rm A} · {\rm A} = 2$  erhält man somit:
$$K_{\rm FM} = \frac {2 \cdot 2\pi}{A \cdot T}= \frac {4\pi}{2\,{\rm V} \cdot 1\,{\rm ms}}\hspace{0.15cm}\underline {= 6283 \,{\rm V}^{-1}{\rm s}^{-1}} \hspace{0.05cm}.$$