Difference between revisions of "Aufgaben:Exercise 3.7: Angular Modulation of a Harmonic Oscillation"

From LNTwww
m
Line 33: Line 33:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Aussagen treffen mit Sicherheit zu?
+
{Which statements are definitely true?
 
|type="[]"}
 
|type="[]"}
+ Es könnte eine PM–Modulation vorliegen.
+
+ There could be a PM modulation.
+ Es könnte eine FM–Modulation vorliegen.
+
+ There could be a FM modulation.
- Die Nachrichtenphase ist sicher &nbsp;$ϕ_{\rm N} = 0$.
+
- The message phase is definitely &nbsp;$ϕ_{\rm N} = 0$.
+ Die Nachrichtenfrequenz ist sicher &nbsp;$f_{\rm N} = 10 \ \rm kHz$.
+
+ The message phase is definitely &nbsp;$f_{\rm N} = 10 \ \rm kHz$.
  
  
{Berechnen Sie das Signal &nbsp;$v_{\rm PM}(t)$&nbsp; nach dem Phasendemodulator.&nbsp; Wie groß ist der Signalwert zum Zeitpunkt &nbsp;$t = 0$?
+
{Calculate the signal&nbsp;$v_{\rm PM}(t)$&nbsp; after the phase demodulator.&nbsp; What is the signal value at time &nbsp;$t = 0$?
 
|type="{}"}
 
|type="{}"}
 
$v_{\rm PM}(t = 0) \ = \ $ { 1.5 3% } $\ \rm V$  
 
$v_{\rm PM}(t = 0) \ = \ $ { 1.5 3% } $\ \rm V$  
  
{Berechnen Sie das Signal &nbsp;$v_{\rm FM}(t)$. Wie groß ist die Nachrichtenphase &nbsp;$ϕ_{\rm N}$?
+
{Calculate the signal&nbsp;$v_{\rm FM}(t)$. What is the message phase &nbsp;$ϕ_{\rm N}$?
 
|type="{}"}
 
|type="{}"}
 
$ϕ_{\rm N} \ = \ $ { 90 3% } $\ \rm Grad$  
 
$ϕ_{\rm N} \ = \ $ { 90 3% } $\ \rm Grad$  
  
{Wie groß ist &nbsp;$K$&nbsp; zu wählen, damit die Amplitude von &nbsp;$v_{\rm FM}(t)$&nbsp; gleich &nbsp;$1.5 \ \rm  V$&nbsp; ist?
+
{How should &nbsp;$K$&nbsp; be chosen so that the amplitude of &nbsp;$v_{\rm FM}(t)$&nbsp; is equal to &nbsp;$1.5 \ \rm  V$&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
$K\ = \ $ { 6.28 3% } $\ \rm \cdot 10^4 \ 1/s$
 
$K\ = \ $ { 6.28 3% } $\ \rm \cdot 10^4 \ 1/s$
  
{Welche der folgenden Aussagen treffen für das FM–modulierte Signal zu?
+
{Which of the following statements is true for the FM-modulated signal?
 
|type="[]"}
 
|type="[]"}
+ Der Phasenhub beträgt &nbsp;$ϕ_{\rm max} = 3$.
+
+ The phase deviation is &nbsp;$ϕ_{\rm max} = 3$.
+ Der Frequenzhub beträgt &nbsp;$Δf_{\rm A} = 30 \ \rm  kHz$.
+
+ The frequenCY deviation is &nbsp;$Δf_{\rm A} = 30 \ \rm  kHz$.
+ Es treten Augenblicksfrequenzen zwischen &nbsp;$0.97\ \rm  MHz$&nbsp; und &nbsp;$1.03 \ \rm  MHz$&nbsp; auf.
+
+ Instantaneous frequencies between &nbsp;$0.97\ \rm  MHz$&nbsp; And &nbsp;$1.03 \ \rm  MHz$&nbsp;.
- Mit &nbsp;$f_{\rm N} = 5 \ \rm  kHz$&nbsp; würde sich am Phasenhub nichts ändern.
+
- If &nbsp;$f_{\rm N} = 5 \ \rm  kHz$&nbsp;, the phase deviation would be unchanged.
+ Mit &nbsp;$f_{\rm N} = 5 \ \rm  kHz$&nbsp; würde sich am Frequenzhub nichts ändern.
+
+ If &nbsp;$f_{\rm N} = 5 \ \rm  kHz$&nbsp; the frequency deviation would be unchanged.
 
</quiz>
 
</quiz>
  

Revision as of 14:25, 17 March 2022

Demodulator
for FM

The signal arriving at a receiver is:

$$ r(t) = 3\,{\rm V} \cdot \cos \hspace{-0.05cm} \big[2 \pi \cdot 1\,{\rm MHz} \cdot t + 3 \cdot \cos(2 \pi \cdot 10\,{\rm kHz} \cdot t)\big]\hspace{0.05cm}.$$

 $r(t)$  is an angle-modulated signal that was neither distorted nor influenced by noise during transmission.

The signals  $v_{\rm PM}(t)$  and  $v_{\rm FM}(t)$  result after ideal demodulation by means of

  • a phase demodulator, given by the equation
$$ v_{\rm PM}(t) = \frac{1}{K_{\rm PM}} \cdot \phi_r(t) \hspace{0.05cm},\hspace{0.3cm} {K_{\rm PM}} = 2\,{\rm V}^{-1}\hspace{0.05cm},$$
  • a frequency demodulator, consisting of a PM demodulator, a differentiator and a constant $K$.


In order for all signals to have equal units, this constant $K$ is dimensionally constrained.





Hints:



Questions

1

Which statements are definitely true?

There could be a PM modulation.
There could be a FM modulation.
The message phase is definitely  $ϕ_{\rm N} = 0$.
The message phase is definitely  $f_{\rm N} = 10 \ \rm kHz$.

2

Calculate the signal $v_{\rm PM}(t)$  after the phase demodulator.  What is the signal value at time  $t = 0$?

$v_{\rm PM}(t = 0) \ = \ $

$\ \rm V$

3

Calculate the signal $v_{\rm FM}(t)$. What is the message phase  $ϕ_{\rm N}$?

$ϕ_{\rm N} \ = \ $

$\ \rm Grad$

4

How should  $K$  be chosen so that the amplitude of  $v_{\rm FM}(t)$  is equal to  $1.5 \ \rm V$ ?

$K\ = \ $

$\ \rm \cdot 10^4 \ 1/s$

5

Which of the following statements is true for the FM-modulated signal?

The phase deviation is  $ϕ_{\rm max} = 3$.
The frequenCY deviation is  $Δf_{\rm A} = 30 \ \rm kHz$.
Instantaneous frequencies between  $0.97\ \rm MHz$  And  $1.03 \ \rm MHz$ .
If  $f_{\rm N} = 5 \ \rm kHz$ , the phase deviation would be unchanged.
If  $f_{\rm N} = 5 \ \rm kHz$  the frequency deviation would be unchanged.


Musterlösung

(1)  Richtig sind die Lösungsvorschläge 1, 2 und 4:

  • Aus der Gleichung für  $r(t)$  kann lediglich abgelesen werden, dass es sich um eine Winkelmodulation handelt,
  • nicht jedoch, ob eine Phasenmodulation (PM) oder eine Frequenzmodulation (FM) vorliegt.
  • Aufgrund der Gleichung steht fest, dass die Nachrichtenfrequenz  $f_{\rm N} = 10 \ \rm kHz$  beträgt.
  • Die Phase  $ϕ_{\rm N} = 0$  des Quellensignals würde dagegen nur zutreffen, wenn eine Phasenmodulation vorläge.


(2)  Mit der Modulatorkonstanten  $K_{\rm PM} = 2 \ \rm V^{–1}$  erhält man hierfür:

$$v_{\rm PM}(t) = \frac{1}{K_{\rm PM}} \cdot \phi_r(t) = \frac{3}{2\,{\rm V}^{-1}} \cdot \cos(2 \pi \cdot 10\,{\rm kHz} \cdot t)\hspace{0.05cm}.$$
  • Für den Zeitpunkt  $t = 0$  gilt deshalb:
$$v_{\rm PM}(t = 0) = {A_{\rm N}} \hspace{0.15cm}\underline {= 1.5\,{\rm V}}\hspace{0.05cm}.$$


(3)  Für das Ausgangssignal  $v_{\rm FM}(t)$  des FM–Demodulators – bestehend aus PM–Demodulator und Differenzierer – kann man schreiben:

$$v_{\rm FM}(t) = \frac{{\rm d}v_{\rm PM}(t)}{{\rm d}t} \cdot K = \frac{K \cdot A_{\rm N}}{2 \pi \cdot f_{\rm N}} \cdot (- \sin(2 \pi \cdot {f_{\rm N}} \cdot t))= \frac{K \cdot A_{\rm N}}{2 \pi \cdot f_{\rm N}} \cdot \cos(2 \pi \cdot {f_{\rm N}} \cdot t + 90^\circ)\hspace{0.05cm}.$$
  • Die Nachrichtenphase ist somit  $ϕ_{\rm N} \hspace{0.15cm}\underline {= 90^\circ}$.


(4)  In diesem Fall muss gelten:  

$$ K ={2 \pi \cdot f_{\rm N}} \hspace{0.15cm}\underline { = 6.28 \cdot 10^{4} \,\,{1}/{ s}} \hspace{0.05cm}.$$


(5)  Richtig sind die Lösungsvorschläge 1, 2, 3 und 5:

  • Der Phasenhub ist identisch mit dem Modulationsindex, der aus der angegebenen Gleichung abgelesen werden kann:
$$\phi_{\rm max} = \eta = 3 = \frac{\Delta f_{\rm A}}{ f_{\rm N}} \hspace{0.05cm}.$$
  • Damit erhält man den Frequenzhub  $Δf_{\rm A} = 3 · f_{\rm N} = 30 \ \rm kHz$.
  • Mit der Trägerfrequenz  $f_{\rm T} = 1 \ \rm MHz$  kann somit die Augenblicksfrequenz  $f_{\rm T}(t)$  nur Werte zwischen  $1±0.03 \ \rm MHz$  annehmen.


Es gilt also auch folgende Aussage:

Bei halber Nachrichtenfrequenz verdoppelt sich der Phasenhub  $η$, während der Frequenzhub  $Δf_{\rm A}$  davon nicht beeinflusst wird:

$$\eta = \frac{K_{\rm PM} \cdot A_{\rm N}}{ f_{\rm N}} = 6 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\Delta f_{\rm A} = \eta \cdot f_{\rm N} = 6 \cdot 5\,{\rm kHz} = 30\,{\rm kHz}\hspace{0.05cm}.$$