Difference between revisions of "Aufgaben:Exercise 3.10Z: Amplitude and Angle Modulation in Comparison"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Modulationsverfahren/Rauscheinfluss bei Winkelmodulation }} [[File:|right|]] ===Fragebogen=== <quiz display=simple> {Multiple-Cho…“)
 
m
 
(28 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Rauscheinfluss bei Winkelmodulation
+
{{quiz-Header|Buchseite=Modulationsverfahren/Rauscheinfluss_bei_Winkelmodulation
 
}}
 
}}
  
[[File:|right|]]
+
[[File:P_ID1112__Mod_Z_3_9.png|right|frame|Characteristic curves illustrating the noise behavior for&nbsp; $\rm AM$&nbsp; and&nbsp; $\rm WM$]]
 +
Consider the transmission of a cosine signal with amplitude modulation &nbsp; $\rm (AM)$&nbsp; and angle modulation $\rm (WM)$. The following boundary conditions apply::
 +
* Message frequency &nbsp;$f_{\rm N} = 10 \ \rm kHz$,
 +
* Transmission power &nbsp;$P_{\rm S} = 100  \ \rm kW$,
 +
* Channel transmission factor &nbsp;$20 · \lg α_{\rm K} = -120  \ \rm dB$,
 +
* noise power density &nbsp;$N_0 = 10^{–16} \ \rm  W/Hz$.
  
  
===Fragebogen===
+
These system parameters are conveniently combined to form the performance parameter:
 +
$$ \xi = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}}$$
 +
The graph shows the resulting sink-to-noise ratio &nbsp;$10 · \lg ρ_v$&nbsp; as a function of the logarithmized performance parameter &nbsp; $ξ$.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
''Hints:''
 +
*This exercise belongs to the chapter&nbsp; [[Modulation_Methods/Influence_of_Noise_on_Systems_with_Angle_Modulation#System_comparison_of_AM.2C_PM_and_FM_with_respect_to_noise]].
 +
*Reference is also made to the page &nbsp; [[Modulation_Methods/Synchronous_Demodulation#Sink_SNR_and_the_performance_parameter|Sink SNR and the performance parameter]]&nbsp; and the chapter&nbsp; [[Modulation_Methods/Frequency_Modulation_(FM)|Frequency Modulation]].
 +
 +
*The following relationships hold:
 +
:$$\rho_{v } = \left\{ \begin{array}{c} \xi \\ {\eta^2}/2 \cdot\xi \\ 3{\eta^2}/2 \cdot\xi \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{for}} \\ {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}l} {\rm DSB/SSB-AM \hspace{0.15cm}without \hspace{0.15cm}carrier} \hspace{0.05cm}, \\ {\rm PM \hspace{0.15cm}with \hspace{0.15cm}modulation\hspace{0.15cm}depth \hspace{0.15cm} \eta } \hspace{0.05cm}, \\ {\rm FM \hspace{0.15cm}with \hspace{0.15cm}modulation\hspace{0.15cm}depth \hspace{0.15cm} \eta }\hspace{0.05cm}. \\ \end{array}$$
 +
* The bandwidths &nbsp;$B_{\rm K}$&nbsp; for angle modulation shall be selected according to the "Carson rule" to guarantee a distortion factor of &nbsp;$K < 1\%$&nbsp;:
 +
:$$ B_{\rm K} = 2 \cdot f_{\rm N} \cdot (\eta +2) \hspace{0.05cm}.$$
 +
 
 +
 
 +
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{Calculate the logarithmized power parameter &nbsp;$ξ$.
 +
|type="{}"}
 +
$10 · \lg \ ξ \ = \ $ { 50 3% } $\ \rm dB$
 +
 
 +
{What is the sink-to-noise ratio for the AM system?
 +
|type="{}"}
 +
$10 · \lg ρ_v \ = \ $ { 50 3% } $\ \rm dB$
 +
 
 +
{What special kind of AM might be present here?
 
|type="[]"}
 
|type="[]"}
- Falsch
+
+ It could be a DSB-AM.
+ Richtig
+
+ It could be a SSB-AM.
 +
+ It could be an AM without a carrier.
 +
- It could be an AM with an added carrier.
  
 +
{In the case of the DSB-AM, what is the required channel bandwidth &nbsp;$B_{\rm K}$?
 +
|type="{}"}
 +
$B_{\rm K} \ = \ $ { 20 3% } $\ \rm kHz$
  
{Input-Box Frage
+
{What is the sink-to-noise ratio for the WM system?
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$10 · \lg ρ_v \ = \ $ { 60 3% } $\ \rm dB$
  
 +
{What is the minimum bandwidth required for the given PM system if &nbsp;$K < 1\%$&nbsp; is to apply?
 +
|type="{}"}
 +
$B_{\rm K} \ = \ $ { 130 3% } $\ \rm kHz$
  
 +
{For&nbsp;$K < 1\%$&nbsp;, die erforderliche Bandbreite, what is the required bandwidth if the WM system implements frequency modulation??
 +
|type="{}"}
 +
$B_{\rm K} \ = \ $ { 91.6 3% } $\ \rm kHz$ 
  
 +
{All other parameters being equal, what is the minimum transmit power &nbsp;$P_{\rm S}$&nbsp; required for the WM system to be no worse than the AM system?
 +
|type="{}"}
 +
$P_{\rm S,\hspace{0.05cm}min} \ = \ $ { 30 3% } $\ \rm W$
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp; From&nbsp; $20 · \lg α_{\rm K} = -120  \ \rm dB$&nbsp; we get&nbsp; $α_{\rm K}  = 10^{–6}$.&nbsp; Thus, with &nbsp; $B_{\rm NF} = f_{\rm N}$, one obtains:
'''2.'''
+
:$$ \xi = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}}= \frac{10^{-12} \cdot 10^{5}\;{\rm W}}{10^{-16}\;{\rm W/Hz} \cdot 10^{4}\;{\rm Hz}}= 10^5 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\xi \hspace{0.15cm}\underline {= 50\,{\rm dB}}\hspace{0.05cm}.$$
'''3.'''
+
 
'''4.'''
+
 
'''5.'''
+
 
'''6.'''
+
'''(2)'''&nbsp; From the graph, it can be seen that &nbsp; $ρ_v = ξ$&nbsp; holds for the AM system.  Thus, the sinking signal-to-noise ratio is:
'''7.'''
+
:$$10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v }\hspace{0.15cm}\underline {= 50\,{\rm dB}}\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; The <u>first three answers</u> are correct:
 +
*It is a DSB-AM or a SSB-AM without a carrier.
 +
*DSB–AM and SSB–AM with a carrier can be ruled out.&nbsp; In these instances, it would always be the case that &nbsp; $ρ_v < \xi$&nbsp;.
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; For DSB–AM, &nbsp;$B_{\rm K} ≥ 2 · f_{\rm N}\hspace{0.15cm}\underline { = 20 \ \rm kHz}$&nbsp; must hold.
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp;From the given graph, it can be seen that from about &nbsp;$20 \ \rm dB$&nbsp; onwards:
 +
:$$10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v }= 10 \cdot {\rm lg} \hspace{0.15cm}\xi + 10\,{\rm dB}. \hspace{0.3cm}{\rm Mit}\hspace{0.15cm}10 \cdot {\rm lg} \hspace{0.15cm}\xi = 50\,{\rm dB}\hspace{0.05cm}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v }\hspace{0.15cm}\underline {= 60\,{\rm dB}}.$$
 +
 
 +
 
 +
 
 +
'''(6)'''&nbsp; In the case of phase modulation:
 +
:$$ \rho_{v }= \frac{\eta^2}{2} \cdot \xi \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \eta^2 = \frac{2 \cdot \rho_{v }}{\xi} = 20\hspace{0.3cm}\Rightarrow \hspace{0.3cm} \eta \approx 4.47 \hspace{0.05cm}.$$
 +
*Thus, the channel bandwidth needed for 𝐾<1% must be:
 +
:$$B_{\rm K} \ge 2 \cdot f_{\rm N} \cdot (\eta +2) = 20\,{\rm kHz}\cdot 6.47 \hspace{0.15cm}\underline { \approx 130\,{\rm kHz}}\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(7)'''&nbsp;Here, a smaller modulation index is sufficient, and thus a smaller bandwidth:
 +
:$${3}/{2}\cdot \eta^2 = 10\hspace{0.3cm}\Rightarrow \hspace{0.3cm} \eta \approx 2.58 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}B_{\rm K} = 20\,{\rm kHz}\cdot 4.58 \hspace{0.15cm}\underline {\approx 91.6\,{\rm kHz}}\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(8)'''&nbsp; In the graph, one can see the so-called FM threshold effect.
 +
*For&nbsp; $10 · \lg \hspace{0.08cm} ξ = 15 \ \rm dB$&nbsp; one obtains exactly the same sink SNR for the WM system as for the AM system.
 +
*Thus, the transmit power can be &nbsp; $35 \ \rm dB$&nbsp; less than s&nbsp; $100 \ \rm kW$:
 +
:$$ 10 \cdot {\rm lg} \hspace{0.15cm}\frac{P_{\rm S,\hspace{0.05cm}min}}{100\,{\rm kW}}= -35\,{\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \frac{P_{\rm S,\hspace{0.05cm}min}}{100\,{\rm kW}}\approx 0.0003\hspace{0.3cm}\Rightarrow \hspace{0.3cm}P_{\rm S,\hspace{0.05cm}min} \hspace{0.15cm}\underline {\approx 30\,{\rm W}}\hspace{0.05cm}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Modulationsverfahren|^3.3 Rauscheinfluss bei Winkelmodulation^]]
+
[[Category:Modulation Methods: Exercises|^3.3 Noise Influence with PM and FM^]]

Latest revision as of 18:28, 17 March 2022

Characteristic curves illustrating the noise behavior for  $\rm AM$  and  $\rm WM$

Consider the transmission of a cosine signal with amplitude modulation   $\rm (AM)$  and angle modulation $\rm (WM)$. The following boundary conditions apply::

  • Message frequency  $f_{\rm N} = 10 \ \rm kHz$,
  • Transmission power  $P_{\rm S} = 100 \ \rm kW$,
  • Channel transmission factor  $20 · \lg α_{\rm K} = -120 \ \rm dB$,
  • noise power density  $N_0 = 10^{–16} \ \rm W/Hz$.


These system parameters are conveniently combined to form the performance parameter: $$ \xi = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}}$$ The graph shows the resulting sink-to-noise ratio  $10 · \lg ρ_v$  as a function of the logarithmized performance parameter   $ξ$.





Hints:

  • The following relationships hold:
$$\rho_{v } = \left\{ \begin{array}{c} \xi \\ {\eta^2}/2 \cdot\xi \\ 3{\eta^2}/2 \cdot\xi \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{for}} \\ {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}l} {\rm DSB/SSB-AM \hspace{0.15cm}without \hspace{0.15cm}carrier} \hspace{0.05cm}, \\ {\rm PM \hspace{0.15cm}with \hspace{0.15cm}modulation\hspace{0.15cm}depth \hspace{0.15cm} \eta } \hspace{0.05cm}, \\ {\rm FM \hspace{0.15cm}with \hspace{0.15cm}modulation\hspace{0.15cm}depth \hspace{0.15cm} \eta }\hspace{0.05cm}. \\ \end{array}$$
  • The bandwidths  $B_{\rm K}$  for angle modulation shall be selected according to the "Carson rule" to guarantee a distortion factor of  $K < 1\%$ :
$$ B_{\rm K} = 2 \cdot f_{\rm N} \cdot (\eta +2) \hspace{0.05cm}.$$



Questions

1

Calculate the logarithmized power parameter  $ξ$.

$10 · \lg \ ξ \ = \ $

$\ \rm dB$

2

What is the sink-to-noise ratio for the AM system?

$10 · \lg ρ_v \ = \ $

$\ \rm dB$

3

What special kind of AM might be present here?

It could be a DSB-AM.
It could be a SSB-AM.
It could be an AM without a carrier.
It could be an AM with an added carrier.

4

In the case of the DSB-AM, what is the required channel bandwidth  $B_{\rm K}$?

$B_{\rm K} \ = \ $

$\ \rm kHz$

5

What is the sink-to-noise ratio for the WM system?

$10 · \lg ρ_v \ = \ $

$\ \rm dB$

6

What is the minimum bandwidth required for the given PM system if  $K < 1\%$  is to apply?

$B_{\rm K} \ = \ $

$\ \rm kHz$

7

For $K < 1\%$ , die erforderliche Bandbreite, what is the required bandwidth if the WM system implements frequency modulation??

$B_{\rm K} \ = \ $

$\ \rm kHz$

8

All other parameters being equal, what is the minimum transmit power  $P_{\rm S}$  required for the WM system to be no worse than the AM system?

$P_{\rm S,\hspace{0.05cm}min} \ = \ $

$\ \rm W$


Solution

(1)  From  $20 · \lg α_{\rm K} = -120 \ \rm dB$  we get  $α_{\rm K} = 10^{–6}$.  Thus, with   $B_{\rm NF} = f_{\rm N}$, one obtains:

$$ \xi = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}}= \frac{10^{-12} \cdot 10^{5}\;{\rm W}}{10^{-16}\;{\rm W/Hz} \cdot 10^{4}\;{\rm Hz}}= 10^5 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\xi \hspace{0.15cm}\underline {= 50\,{\rm dB}}\hspace{0.05cm}.$$


(2)  From the graph, it can be seen that   $ρ_v = ξ$  holds for the AM system. Thus, the sinking signal-to-noise ratio is:

$$10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v }\hspace{0.15cm}\underline {= 50\,{\rm dB}}\hspace{0.05cm}.$$


(3)  The first three answers are correct:

  • It is a DSB-AM or a SSB-AM without a carrier.
  • DSB–AM and SSB–AM with a carrier can be ruled out.  In these instances, it would always be the case that   $ρ_v < \xi$ .


(4)  For DSB–AM,  $B_{\rm K} ≥ 2 · f_{\rm N}\hspace{0.15cm}\underline { = 20 \ \rm kHz}$  must hold.


(5) From the given graph, it can be seen that from about  $20 \ \rm dB$  onwards:

$$10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v }= 10 \cdot {\rm lg} \hspace{0.15cm}\xi + 10\,{\rm dB}. \hspace{0.3cm}{\rm Mit}\hspace{0.15cm}10 \cdot {\rm lg} \hspace{0.15cm}\xi = 50\,{\rm dB}\hspace{0.05cm}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v }\hspace{0.15cm}\underline {= 60\,{\rm dB}}.$$


(6)  In the case of phase modulation:

$$ \rho_{v }= \frac{\eta^2}{2} \cdot \xi \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \eta^2 = \frac{2 \cdot \rho_{v }}{\xi} = 20\hspace{0.3cm}\Rightarrow \hspace{0.3cm} \eta \approx 4.47 \hspace{0.05cm}.$$
  • Thus, the channel bandwidth needed for 𝐾<1% must be:
$$B_{\rm K} \ge 2 \cdot f_{\rm N} \cdot (\eta +2) = 20\,{\rm kHz}\cdot 6.47 \hspace{0.15cm}\underline { \approx 130\,{\rm kHz}}\hspace{0.05cm}.$$


(7) Here, a smaller modulation index is sufficient, and thus a smaller bandwidth:

$${3}/{2}\cdot \eta^2 = 10\hspace{0.3cm}\Rightarrow \hspace{0.3cm} \eta \approx 2.58 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}B_{\rm K} = 20\,{\rm kHz}\cdot 4.58 \hspace{0.15cm}\underline {\approx 91.6\,{\rm kHz}}\hspace{0.05cm}.$$


(8)  In the graph, one can see the so-called FM threshold effect.

  • For  $10 · \lg \hspace{0.08cm} ξ = 15 \ \rm dB$  one obtains exactly the same sink SNR for the WM system as for the AM system.
  • Thus, the transmit power can be   $35 \ \rm dB$  less than s  $100 \ \rm kW$:
$$ 10 \cdot {\rm lg} \hspace{0.15cm}\frac{P_{\rm S,\hspace{0.05cm}min}}{100\,{\rm kW}}= -35\,{\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \frac{P_{\rm S,\hspace{0.05cm}min}}{100\,{\rm kW}}\approx 0.0003\hspace{0.3cm}\Rightarrow \hspace{0.3cm}P_{\rm S,\hspace{0.05cm}min} \hspace{0.15cm}\underline {\approx 30\,{\rm W}}\hspace{0.05cm}.$$