Difference between revisions of "Aufgaben:Exercise 4.09Z: Periodic ACF"

From LNTwww
 
(16 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Autokorrelationsfunktion (AKF)
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Auto-Correlation_Function
 
}}
 
}}
  
[[File:P_ID380__Sto_Z_4_9.png|right|]]
+
[[File:P_ID380__Sto_Z_4_9.png|right|frame|Periodic multilevel rectangular signal]]
:Wir betrachten in dieser Aufgabe einen periodischen und gleichzeitig ergodischen stochastischen Prozess {$x_i(t)$}, der durch die dargestellte Musterfunktion $x(t)$ vollständig charakterisiert ist.
+
We consider in this exercise a periodic and simultaneously ergodic stochastic process  $\{x_i(t)\}$,  which is fully characterized by the presented pattern function  $x(t)$.
  
:Weitere Mustersignale des Zufallsprozesses {$x_i(t)$} erhält man durch Verschiebung um unterschiedlich große Verzögerungen $\tau_i$, wobei $\tau_i$ als gleichverteilt zwischen 0 und der Periodendauer $T_0$ angenommen wird.
+
Further pattern signals of the random process  $\{x_i(t)\}$  are obtained by shifting by  different delays  $\tau_i$,  where  $\tau_i$  is assumed to be uniformly distributed between  $0$  and the period  $T_0$.
  
:<b>Hinweis</b>: Diese Aufgabe bezieht sich auf die theoretischen Grundlagen von Kapitel 4.4.
 
  
 +
'''Hint:'''&nbsp; The exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Auto-Correlation_Function|Auto-Correlation Function]].
 +
  
===Fragebogen===
+
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Ermitteln Sie die Periodendauer <i>T</i><sub>0</sub>, normiert auf die Zeitdauer <i>T</i>.
+
{Determine the period duration&nbsp; $T_0$&nbsp; normalized to the period duration&nbsp; $T$&nbsp; defined in the sketch.
 
|type="{}"}
 
|type="{}"}
$T_0/T$ = { 5 3% }
+
$T_0/T \ = \ $ { 5 3% }
  
  
{Wie gro&szlig; ist der Gleichsignalanteil (lineare Mittelwert) des Prozesses?
+
{What is the size of the DC signal component &nbsp; &rArr; &nbsp; linear mean&nbsp; $m_x$&nbsp; of the described process&nbsp; $\{x_i(t)\}$?
 
|type="{}"}
 
|type="{}"}
$m_x$ = { 0.4 3% } V
+
$m_x \ = \ $ { 0.4 3% } $\ \rm V$
  
  
{Wie gro&szlig; ist die (auf den Widerstand 1 &Omega; bezogene) Prozessleistung?
+
{What is the process power&nbsp; (related to the resistor&nbsp; $1 \hspace{0.05cm} \rm \Omega$&nbsp;)?
 
|type="{}"}
 
|type="{}"}
$P_x$ = { 2 3% } $V^2$
+
$P_x \ = \ $ { 2 3% } $\ \rm V^2$
  
  
{Berechnen Sie die AKF-Werte f&uuml;r <i>&tau;</i> = <i>T</i> und <i>&tau;</i> = 2<i>T</i>.
+
{Calculate the ACF values for&nbsp; $\tau = T$&nbsp; and&nbsp; $\tau = 2T$.
 
|type="{}"}
 
|type="{}"}
$\phi_x(\tau = T)$ = { 0.6 3% } $V^2$
+
$\varphi_x(\tau = T) \ = \ $ { 0.6 3% } $\ \rm V^2$
$\phi_x(\tau = 2T)$ = - { 1.2 3% } $V^2$
+
$\varphi_x(\tau = 2T) \ = \ $ { -1.236--1.164 } $\ \rm V^2$
  
  
{Skizzieren Sie den AKF-Verlauf unter Ber&uuml;cksichtigung von Symmetrieen. Welche Werte ergeben sich f&uuml;r <i>&tau;</i> = 3<i>T</i> und <i>&tau;</i> = 4<i>T</i>?
+
{Sketch the ACF curve taking into account symmetries.&nbsp; What values result for&nbsp; $\tau = 3T$&nbsp; and&nbsp; $\tau = 4T$?
 
|type="{}"}
 
|type="{}"}
$\phi_x(\tau = 3T)$ = - { 1.2 3% } $V^2$
+
$\varphi_x(\tau = 3T) \ = \ $ { -1.236--1.164 } $\ \rm V^2$
$\phi_x(\tau = 4T)$ = { 0.6 3% } $V^2$
+
$\varphi_x(\tau = 4T)\ = \ $ { 0.6 3% } $\ \rm V^2$
  
  
{Berechnen Sie den Erwartungswert der AKF bez&uuml;glich aller <i>&tau;</i>-Werte.<br>Interpretieren Sie das Ergebnis.
+
{Calculate the expected value of the ACF with respect to all&nbsp; $\tau$ values.&nbsp; Interpret the result.
 
|type="{}"}
 
|type="{}"}
$E[\phi_x(\tau)]$ = { 0.16 3% } $V^2$
+
${\rm E}\big[\varphi_x(\tau)\big]\ = \ $ { 0.16 3% } $\ \rm V^2$
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
[[File:P_ID382__Sto_Z_4_9_d.png|right|]]
+
[[File:P_ID382__Sto_Z_4_9_d.png|right|frame|For the ACF calculation]]
:<b>1.</b>&nbsp;&nbsp;Die Periodendauer betr&auml;gt <u><i>T</i><sub>0</sub> = 5<i>T</i></u>.
+
'''(1)'''&nbsp; The&nbsp; (normalized)&nbsp; period duration is&nbsp; $T_0/T \hspace{0.15cm}\underline{= 5}.$
 +
 
 +
 
 +
'''(2)'''&nbsp; Due to periodicity,&nbsp; the averaging over a periodic time&nbsp; $T_0$:
 +
:$$m_x = \frac{1}{T_0} \cdot \int_0^{T_0} x(t) \hspace{0.1cm}{\rm d} t = \frac{1}{5 T} \cdot (2\hspace{0.05cm}{\rm V} \cdot 2 T - 2\hspace{0.05cm}{\rm V} \cdot 2 T) \hspace{0.15cm}\underline{= \rm 0.4 \,V}.$$
 +
 
 +
 
 +
'''(3)'''&nbsp; In analogy to the last subtask,&nbsp; we obtain for the mean power:
 +
:$$P_x = \frac{2 T}{5 T} \cdot \big[(\rm 2V)^2 +(- \rm 1V)^2 \big]\hspace{0.15cm}\underline{ = \rm 2 \,V^2}.$$
 +
 
 +
 
 +
'''(4)'''&nbsp; The accompanying graph shows in each case in the range from&nbsp; $0$&nbsp; to&nbsp; $T_0 = 5T$.
 +
:*above the product&nbsp; $x(t) \cdot x(t+T)$,
 +
:*down the product&nbsp; $x(t) \cdot x(t+2T)$. 
 +
 
 +
 
 +
*Note that&nbsp; $x(t+T)$&nbsp; means a shift of the signal&nbsp; $x(t)$&nbsp; by&nbsp; $T$&nbsp; to the left.
 +
 
 +
*From these sketches follow the relations:
 +
:$$\varphi_x (T)= \rm {1}/{5 } \cdot (\rm 4V^2 + \rm 1V^2 - \rm 2V^2) \hspace{0.15cm}\underline{= \rm 0.6\, V^2},$$
 +
:$$\varphi_x ( 2 T)= \rm {1}/{5 } \cdot(-\rm 2V^2 \cdot 3) \hspace{0.15cm}\underline{= - \rm 1.2 \,V^2}.$$
 +
 
  
:<b>2.</b>&nbsp;Aufgrund der Periodizit&auml;t gen&uuml;gt die Mittelung &uuml;ber eine Periodendauer <i>T</i><sub>0</sub>:
+
[[File:P_ID383__Sto_Z_4_9_e.png|right|frame|Wanted auto-correlation function]]
:$$m_x = \frac{1}{T_0} \cdot \int_0^{T_0} x(t) \hspace{0.1cm}\rm d \it t \\ = \rm \frac{1}{5 \it T} (\rm 2V \cdot 2 \it T - \rm 1V \cdot 2 \it T) \hspace{0.15cm}\underline{= \rm 0.4 \,V}.$$
+
'''(5)'''&nbsp; An auto-correlation function is always even: &nbsp;  
 +
:$$\varphi_x (-\tau)= \varphi_x (\tau).$$
 +
*In addition,&nbsp; for periodic processes,&nbsp; the ACF is also periodic with the same period duration&nbsp; $T_0$&nbsp; as the individual pattern functions.&nbsp; It follows that:
  
:<b>3.</b>&nbsp;In analoger Weise zu Aufgabe 2) erh&auml;lt man f&uuml;r die mittlere Leistung:
+
:$$\varphi_x ( 0) = \varphi_x (5 T) = \varphi_x (10 T) = \ \text{...} \ = \it P_x = \rm 2 \,V^2,$$
:$$P_x = \rm \frac{2 \it T}{5 \it T} ((\rm 2V)^2 +(- \rm 1V)^2 )\hspace{0.15cm}\underline{ = \rm 2 \,V^2}.$$
+
:$$\varphi_x (3 T) = \varphi_x (-3 T) =\varphi_x (2 T) = \ \text{...} \ \hspace{0.15cm}\underline{= - \rm 1.2 \,V^2},$$
 +
:$$\varphi_x (4 T) = \varphi_x (-4 T) =\varphi_x ( T) = \ \text{...} \ \hspace{0.15cm}\underline{= \rm 0.6 \,V^2}.$$
  
:<b>4.</b>&nbsp;Die Bilder zeigen das Produkt <i>x</i>(<i>t</i>) &middot; <i>x</i>(<i>t</i> + <i>T</i>) bzw. <i>x</i>(<i>t</i>) &middot; <i>x</i>(<i>t</i> + 2<i>T</i>), jeweils im Bereich von 0 bis <i>T</i><sub>0</sub> = 5<i>T</i>.
+
*The calculated ACF values can be connected by straight line sections,&nbsp; since integration over rectangular functions always yields linear subsections.
  
:Zu beachten ist, dass <i>x</i>(<i>t</i> + <i>T</i>) eine Verschiebung des Signals <i>x</i>(<i>t</i>) um <i>T</i> nach links bedeutet. Aus den beiden Grafiken folgen die Beziehungen:
 
:$$\varphi_x (T)=  \rm \frac{1}{5 } (\rm 4V^2 + \rm 1V^2 - \rm 2V^2) \hspace{0.15cm}\underline{= \rm 0.6\, V^2},$$
 
:$$\varphi_x (\rm 2\it T)=  \rm \frac{1}{5 } (-\rm 2V^2 \cdot 3) \hspace{0.15cm}\underline{= - \rm 1.2 \,V^2}.$$
 
  
:<b>5.</b>&nbsp;&nbsp;Eine Autokorrelationsfunktion ist stets gerade: <i>&phi;<sub>x</sub></i>(&ndash;<i>&tau;</i>) = <i>&phi;<sub>x</sub></i>(<i>&tau;</i>). Bei periodischen Prozessen ist die AKF zudem ebenfalls periodisch und zwar mit genau der gleichen Periodendauer <i>T</i><sub>0</sub> wie die einzelnen Musterfunktionen. Daraus folgt:
 
:$$\varphi_x (\rm 0) =  \varphi_x (\rm 5\it T) = \varphi_x (\rm 10\it T) = .... = \it P_x = \rm 2 \,V^2,$$
 
:$$\varphi_x (\rm 3\it T) = \varphi_x (\rm -3\it T) =\varphi_x (\rm 2\it T) = .... \hspace{0.15cm}\underline{= - \rm 1.2 \,V^2},$$
 
:$$\varphi_x (\rm 4\it T) = \varphi_x (\rm -4\it T) =\varphi_x (\rm \it T) = .... \hspace{0.15cm}\underline{=  \rm 0.6 \,V^2}.$$
 
  
:Die berechneten AKF-Werte k&ouml;nnen durch Geradenabschnitte miteinander verbunden werden, da die Integration &uuml;ber Rechteckfunktionen stets lineare Teilabschnitte ergibt.
+
'''(6)'''&nbsp; The five intervals&nbsp; $(0$ to $T)$,&nbsp; $(T$ to $2T)$, ... ,&nbsp; $(4T$ to $5T)$&nbsp; provide the contributions.  
[[File:P_ID383__Sto_Z_4_9_e.png|center|]]
+
:$$(+1.3; -0.3; -1.2; -0.3; +1.3) \cdot \rm V^2.$$
 +
*This gives the expected value&nbsp; (linear mean):
 +
:$${\rm E}\big[\varphi_x(\tau)\big] = 1/5 \cdot (1.3-0.3 -1.2 -0.3 +1.3]\hspace{0.15cm}\underline{= \rm 0.16 \,V^2}.$$
  
:<b>6.</b>&nbsp;&nbsp;Die Mittelung &uuml;ber die 5 Intervalle 0 bis <i>T</i>, <i>T</i> bis 2<i>T</i>, ... , 4<i>T</i> bis 5<i>T</i> liefern (jeweils mit der Einheit V<sup>2</sup>): 1.3; &ndash;0.3, &ndash;1.2, &ndash;0.3, 1.3. Daraus ergibt sich der Erwartungswert <u>E[<i>&phi;<sub>x</sub></i>(<i>&tau;</i>)] = 0.16 V<sup>2</sup></u>. Dies entspricht dem Quadrat des Mittelwertes <i>m<sub>x</sub></i> (siehe Teilaufgabe 2).
+
*This corresponds to the square of the mean&nbsp; $m_x$ &nbsp; &rArr; &nbsp; see subtask&nbsp; '''(2)'''.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 79: Line 100:
  
  
[[Category:Aufgaben zu Stochastische Signaltheorie|^4.4 Autokorrelationsfunktion (AKF)^]]
+
[[Category:Theory of Stochastic Signals: Exercises|^4.4 Auto-Correlation Function^]]

Latest revision as of 17:33, 19 March 2022

Periodic multilevel rectangular signal

We consider in this exercise a periodic and simultaneously ergodic stochastic process  $\{x_i(t)\}$,  which is fully characterized by the presented pattern function  $x(t)$.

Further pattern signals of the random process  $\{x_i(t)\}$  are obtained by shifting by different delays  $\tau_i$,  where  $\tau_i$  is assumed to be uniformly distributed between  $0$  and the period  $T_0$.


Hint:  The exercise belongs to the chapter  Auto-Correlation Function.


Questions

1

Determine the period duration  $T_0$  normalized to the period duration  $T$  defined in the sketch.

$T_0/T \ = \ $

2

What is the size of the DC signal component   ⇒   linear mean  $m_x$  of the described process  $\{x_i(t)\}$?

$m_x \ = \ $

$\ \rm V$

3

What is the process power  (related to the resistor  $1 \hspace{0.05cm} \rm \Omega$ )?

$P_x \ = \ $

$\ \rm V^2$

4

Calculate the ACF values for  $\tau = T$  and  $\tau = 2T$.

$\varphi_x(\tau = T) \ = \ $

$\ \rm V^2$
$\varphi_x(\tau = 2T) \ = \ $

$\ \rm V^2$

5

Sketch the ACF curve taking into account symmetries.  What values result for  $\tau = 3T$  and  $\tau = 4T$?

$\varphi_x(\tau = 3T) \ = \ $

$\ \rm V^2$
$\varphi_x(\tau = 4T)\ = \ $

$\ \rm V^2$

6

Calculate the expected value of the ACF with respect to all  $\tau$ values.  Interpret the result.

${\rm E}\big[\varphi_x(\tau)\big]\ = \ $

$\ \rm V^2$


Solution

For the ACF calculation

(1)  The  (normalized)  period duration is  $T_0/T \hspace{0.15cm}\underline{= 5}.$


(2)  Due to periodicity,  the averaging over a periodic time  $T_0$:

$$m_x = \frac{1}{T_0} \cdot \int_0^{T_0} x(t) \hspace{0.1cm}{\rm d} t = \frac{1}{5 T} \cdot (2\hspace{0.05cm}{\rm V} \cdot 2 T - 2\hspace{0.05cm}{\rm V} \cdot 2 T) \hspace{0.15cm}\underline{= \rm 0.4 \,V}.$$


(3)  In analogy to the last subtask,  we obtain for the mean power:

$$P_x = \frac{2 T}{5 T} \cdot \big[(\rm 2V)^2 +(- \rm 1V)^2 \big]\hspace{0.15cm}\underline{ = \rm 2 \,V^2}.$$


(4)  The accompanying graph shows in each case in the range from  $0$  to  $T_0 = 5T$.

  • above the product  $x(t) \cdot x(t+T)$,
  • down the product  $x(t) \cdot x(t+2T)$.


  • Note that  $x(t+T)$  means a shift of the signal  $x(t)$  by  $T$  to the left.
  • From these sketches follow the relations:
$$\varphi_x (T)= \rm {1}/{5 } \cdot (\rm 4V^2 + \rm 1V^2 - \rm 2V^2) \hspace{0.15cm}\underline{= \rm 0.6\, V^2},$$
$$\varphi_x ( 2 T)= \rm {1}/{5 } \cdot(-\rm 2V^2 \cdot 3) \hspace{0.15cm}\underline{= - \rm 1.2 \,V^2}.$$


Wanted auto-correlation function

(5)  An auto-correlation function is always even:  

$$\varphi_x (-\tau)= \varphi_x (\tau).$$
  • In addition,  for periodic processes,  the ACF is also periodic with the same period duration  $T_0$  as the individual pattern functions.  It follows that:
$$\varphi_x ( 0) = \varphi_x (5 T) = \varphi_x (10 T) = \ \text{...} \ = \it P_x = \rm 2 \,V^2,$$
$$\varphi_x (3 T) = \varphi_x (-3 T) =\varphi_x (2 T) = \ \text{...} \ \hspace{0.15cm}\underline{= - \rm 1.2 \,V^2},$$
$$\varphi_x (4 T) = \varphi_x (-4 T) =\varphi_x ( T) = \ \text{...} \ \hspace{0.15cm}\underline{= \rm 0.6 \,V^2}.$$
  • The calculated ACF values can be connected by straight line sections,  since integration over rectangular functions always yields linear subsections.


(6)  The five intervals  $(0$ to $T)$,  $(T$ to $2T)$, ... ,  $(4T$ to $5T)$  provide the contributions.

$$(+1.3; -0.3; -1.2; -0.3; +1.3) \cdot \rm V^2.$$
  • This gives the expected value  (linear mean):
$${\rm E}\big[\varphi_x(\tau)\big] = 1/5 \cdot (1.3-0.3 -1.2 -0.3 +1.3]\hspace{0.15cm}\underline{= \rm 0.16 \,V^2}.$$
  • This corresponds to the square of the mean  $m_x$   ⇒   see subtask  (2).