Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 4.2: Low-Pass for Signal Reconstruction"

From LNTwww
Line 69: Line 69:
 
'''(1)'''&nbsp; Only the <u>first statement</u> is correct:  
 
'''(1)'''&nbsp; Only the <u>first statement</u> is correct:  
 
*Sampling&nbsp; qdis(t)&nbsp; with sampling frequency&nbsp; fA=8 kHz&nbsp; leads to an irreversible error, since&nbsp; Qdis(f)&nbsp; involves a discrete spectral component (diracline) at&nbsp; f4=4 kHz&nbsp; and the phase value&nbsp; φ_4 ≠ 0&nbsp; is.  
 
*Sampling&nbsp; q_{\rm dis}(t)&nbsp; with sampling frequency&nbsp; f_{\rm A} = 8 \ \rm kHz&nbsp; leads to an irreversible error, since&nbsp; Q_{\rm dis}(f)&nbsp; involves a discrete spectral component (diracline) at&nbsp; f_4 = 4\ \rm kHz&nbsp; and the phase value&nbsp; φ_4 ≠ 0&nbsp; is.  
*With the phase value given here&nbsp; φ_4 = 90^\circ&nbsp; (4 \ \rm kHz- sinusoidal component)&nbsp; holds&nbsp; $ε_{\rm dis}(t) = v_{\rm dis}(t) - q_{\rm dis}(t) = -0. 4 \ \rm V - \sin(2π - f_4 - t)$.&nbsp; See also sample solution to exercise 4.2Z.  
+
*With the phase value given here&nbsp; φ_4 = 90^\circ&nbsp; (4 \ \rm kHz- sinusoidal component)&nbsp; holds&nbsp; $ε_{\rm dis}(t) = v_{\rm dis}(t) - q_{\rm dis}(t) = -0. 4 \ \rm V - \sin(2π \cdot f_4 \cdot t)$.&nbsp; See also sample solution to exercise 4.2Z.  
 
*On the other hand, the signal&nbsp; q_{\rm kon}(t)&nbsp; with the continuous spectrum&nbsp; Q_{\rm kon}(f)&nbsp; can also then be measured with a square-wave low-pass filter&nbsp; (with cutoff frequency&nbsp; f_{\rm G} = 4\ \rm kHz)&nbsp; be completely reconstructed if sampling frequency&nbsp; f_{\rm A} = 8\ \rm kHz&nbsp; was used. &nbsp; For all frequencies not equal to&nbsp; f_4&nbsp; the sampling theorem is satisfied.  
 
*On the other hand, the signal&nbsp; q_{\rm kon}(t)&nbsp; with the continuous spectrum&nbsp; Q_{\rm kon}(f)&nbsp; can also then be measured with a square-wave low-pass filter&nbsp; (with cutoff frequency&nbsp; f_{\rm G} = 4\ \rm kHz)&nbsp; be completely reconstructed if sampling frequency&nbsp; f_{\rm A} = 8\ \rm kHz&nbsp; was used. &nbsp; For all frequencies not equal to&nbsp; f_4&nbsp; the sampling theorem is satisfied.  
 
*But the contribution of the&nbsp; f_4 component to the total spectrum&nbsp; Q_{\rm kon}(f)&nbsp; is only vanishingly small &nbsp; ⇒ &nbsp; {\rm Pr}(f_4) → 0 as long as the spectrum at&nbsp; f_4&nbsp; has no diracline.
 
*But the contribution of the&nbsp; f_4 component to the total spectrum&nbsp; Q_{\rm kon}(f)&nbsp; is only vanishingly small &nbsp; ⇒ &nbsp; {\rm Pr}(f_4) → 0 as long as the spectrum at&nbsp; f_4&nbsp; has no diracline.

Revision as of 22:52, 4 April 2022

Continuous and discrete spectrum  (examples)

We consider in this exercise two different source signals  q_{\rm kon}(t)  and  q_{\rm dis}(t) whose magnitude spectra  |Q_{\rm kon}(f)|  and  |Q_{\rm dis}(f)|  are plotted.   The highest frequency occurring in the signals is in each case  4 \rm kHz.

  • Nothing more is known of the spectral function  Q_{\rm kon}(f)  than that it is a continuous spectrum, where:
Q_{\rm kon}(|f| \le 4\,{\rm kHz}) \ne 0 \hspace{0.05cm}.
  • The spectrum  Q_{\rm dis}(f)  contains spectral lines at  ±1 \ \rm kHz±2 \ \rm kHz±3 \ \rm kHz  and  ±4 \ \rm kHz.  Thus:
q_{\rm dis}(t) = \sum_{i=1}^{4}C_i \cdot \cos (2 \pi \cdot f_i \cdot t - \varphi_i),
Amplitude values:   C_1 = 1.0 \ \rm V, C_2 = 1.8 \ \rm V, C_3 = 0.8 \ \rm V, C_4 = 0.4 \ \rm V.
The phase values  φ_1φ_2  and  φ_3  are respectively in the range  ±18^\circ  and it holds  φ_4 = 90^\circ.


The signals are each sampled at frequency  f_{\rm A}  and immediately fed to an ideal rectangular lowpass filter with cutoff frequency  f_{\rm G}  This scenario applies, for example, to.

  • the interference-free pulse amplitude modulation (PAM) and
  • the interference-free pulse code modulation (PCM) at infinitely large quantization stage number  M.


The output signal of the (rectangular) low-pass filter is called the sink signal  v(t)  and for the error signal 

ε(t) = v(t) - q(t).

This is different from zero only if the parameters of the sampling  (sampling frequency f_{\rm A})  and/or the signal reconstruction  (cutoff frequency f_{\rm G})  are not dimensioned in the best possible way.





Hints:


Questions

1

Which statements are true for  f_{\rm A} = 8\ \rm kHz  and  f_{\rm G} = 4\ \rm kHz ?

The signal  q_{\rm kon}(t)  can be completely reconstructed:   ε_{\rm kon}(t) = 0.
The signal  q_{\rm dis}(t)  can be completely reconstructed:   ε_{\rm dis}(t) = 0.

2

Which statements are true for  f_{\rm A} = 10\ \rm kHz  and  f_{\rm G} = 5\ \rm kHz ?

The signal  q_{\rm dis}(t)  can be completely reconstructed:   ε_{\rm dis}(t) = 0.
ε_{\rm dis}(t)  is a harmonic oscillation with  4 \rm kHz.
ε_{\rm dis}(t)  is a harmonic oscillation with  6 \rm kHz.

3

Which statements are true for  f_{\rm A} = 10\ \rm kHz  and  f_{\rm G} = 3.5\ \rm kHz ?

The signal  q_{\rm dis}(t)  can be completely reconstructed:   ε_{\rm dis}(t) = 0.
ε_{\rm dis}(t)  is a harmonic oscillation with  4 \rm kHz.
ε_{\rm dis}(t)  is a harmonic oscillation with  6 \rm kHz.

4

Which statements are true for  f_{\rm A} = 10\ \rm kHz  and  f_{\rm G} = 6.5\ \rm kHz?

The signal  q_{\rm dis}(t)  can be completely reconstructed:   ε_{\rm dis}(t) = 0.
ε_{\rm dis}(t)  is a harmonic oscillation with  4 \rm kHz.
ε_{\rm dis}(t)  is a harmonic oscillation with  6 \ \rm kHz.


Solution

(1)  Only the first statement is correct:

  • Sampling  q_{\rm dis}(t)  with sampling frequency  f_{\rm A} = 8 \ \rm kHz  leads to an irreversible error, since  Q_{\rm dis}(f)  involves a discrete spectral component (diracline) at  f_4 = 4\ \rm kHz  and the phase value  φ_4 ≠ 0  is.
  • With the phase value given here  φ_4 = 90^\circ  (4 \ \rm kHz- sinusoidal component)  holds  ε_{\rm dis}(t) = v_{\rm dis}(t) - q_{\rm dis}(t) = -0. 4 \ \rm V - \sin(2π \cdot f_4 \cdot t).  See also sample solution to exercise 4.2Z.
  • On the other hand, the signal  q_{\rm kon}(t)  with the continuous spectrum  Q_{\rm kon}(f)  can also then be measured with a square-wave low-pass filter  (with cutoff frequency  f_{\rm G} = 4\ \rm kHz)  be completely reconstructed if sampling frequency  f_{\rm A} = 8\ \rm kHz  was used.   For all frequencies not equal to  f_4  the sampling theorem is satisfied.
  • But the contribution of the  f_4 component to the total spectrum  Q_{\rm kon}(f)  is only vanishingly small   ⇒   {\rm Pr}(f_4) → 0 as long as the spectrum at  f_4  has no diracline.


(2)  Only the proposed solution 1 is correct:

  • With  f_{\rm A} = 10\ \rm kHz  the sampling theorem is satisfied in both cases.
  • With  f_{\rm G} = f_{\rm A} /2  both error signals  ε_{\rm kon}(t) and ε_{\rm dis}(t) are identically zero.
  • In addition, the signal reconstruction also works as long as  f_{\rm G} > 4 \ \rm kHz  and  f_{\rm G} < 6 \ \rm kHz  holds.


(3)  The correct solution here is suggested solution 2:

  • With  f_{\rm G} = 3.5 \ \rm kHz  the lowpass incorrectly removes the  4\ \rm kHz component, that is, then holds:
v_{\rm dis}(t) = q_{\rm dis}(t) - 0.4\,{\rm V} \cdot \sin (2 \pi \cdot f_{\rm 4} \cdot t)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} \varepsilon_{\rm dis}(t) = - 0.4\,{\rm V} \cdot \sin (2 \pi \cdot f_{\rm 4} \cdot t)\hspace{0.05cm}.


Signal reconstruction with too large cutoff frequency

(4)  The correct solution here is suggested solution 3:

  • Sampling with  f_{\rm A} = 10\ \rm kHz  yields the periodic spectrum sketched on the right.
  • The low pass with  f_{\rm G} = 6.5 \ \rm kHz  removes all discrete frequency components with  |f| ≥ 7\ \rm kHz, but not the  6\ \rm kHz component.


The error signal  ε_{\rm dis}(t) = v_{\rm dis}(t) - q_{\rm dis}(t)  is then a harmonic oscillation with

  • the frequency  f_6 = f_{\rm A} - f_4 = 6\ \rm kHz,
  • the amplitude  A_4 of the  f_4 component,
  • the phase  φ_{-4} = -φ_4  of the  Q(f) component at  f = -f_4.