Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 4.5: Non-Linear Quantization"

From LNTwww
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Pulscodemodulation
+
{{quiz-Header|Buchseite=Modulation_Methods/Pulse_Code_Modulation
 
}}
 
}}
  

Revision as of 16:43, 7 April 2022

PCM system with companding

To investigate  nonlinear quantization  we start from the outlined system model.

  • We disregard the influence of the channel and the PCM coding or decoding.
  • Thus,  v_{\rm Q}(ν \cdot T_{\rm A}) = q_{\rm Q}(ν \cdot T_{\rm A}) always applies, whereby the time specification  ν \cdot T_{\rm A}  is omitted in the following.

By comparing one output variable with one input variable at a time, it is possible to determine the influence

  • of the compressor   ⇒    q_{\rm K}(q_{\rm A}),
  • of the linear quantizer   ⇒    q_{\rm Q}(q_{\rm K}),
  • of the nonlinear quantizer   ⇒    q_{\rm Q}(q_{\rm A}),
  • of the expander   ⇒    v_{\rm E}(v_{\rm Q}), and
  • of the overall system   ⇒    v_{\rm E}(q_{\rm A})


  The following assumptions are made:

  • All samples  q_{\rm A}  are in the range of values  ±1  .
  • The (linear) quantizer works with  M = 256  quantization levels, which are marked with  μ = 0  to  μ = 255 .
  • For compression, the so-called 13-segment characteristic is used.


This means:

  • In the range  |q_{\rm A}| ≤ 1/64  holds  q_{\rm K} = q_{\rm A}.
  • For  q_{\rm A} > 1/64 ,  k = 1, ... , 6  the following six additional ranges of the compressor characteristic:
q_{\rm K}(q_{\rm A}) = 2^{4-k} \cdot q_{\rm A} + {k}/{8}\hspace{0.9cm} {\rm im\,\,range}\hspace{0.9cm}2^{k-7}< q_{\rm A} \le 2^{k-6} \hspace{0.05cm}.
  • Another six domains exist for the negative  q_{\rm A} values with  k = -1, ... , -6, which are point-symmetric with respect to the origin.
  • However, these are not considered further in this exercise.





Hints:


Questions

1

If  q_{\rm A} = 0.4.  What is the output value  q_{\rm K}  of the compressor?

q_{\rm K} \ = \

2

To which quantization interval  μ  does  q_{\rm A} = 0.4 belong?

\mu \ = \

3

which quantization value  q_{\rm Q}  belongs to  q_{\rm A} = 0.4?

q_{\rm Q} \ = \

4

In contrast, what quantization value  q_{\rm Q}  belongs to  q_{\rm A} = 0.04?

q_{\rm Q} \ = \

5

at the receiver, the input value is  v_{\rm Q} = 211/256 ≈ 0.824  What value  v_{\rm E}  does the expander provide?

v_{\rm E} \ = \

6

What are the properties of the characteristic  q_{\rm Q}(q_{\rm A}) ?

The characteristic  q_{\rm Q}(q_{\rm A})  approximates the compressor characteristic in steps.
The characteristic  q_{\rm Q}(q_{\rm A})  approximates the angle bisector in steps.
The step width is the same in all segments  (except for  k = 0) .
The step height is equal in all segments  (except for  k = 0) .

7

What are the properties of the characteristic  v_{\rm E}(q_{\rm A}) ?

The characteristic  v_{\rm E}(q_{\rm A})  approximates the compressor characteristic in steps.
The characteristic  v_{\rm E}(q_{\rm A})  approximates the angle bisector in steps.
The step width is the same in all segments  (except for  k = 0) .
The step height is equal in all segments  (except for  k = 0) .


Solution

(1)  The sample  q_{\rm A} = 0.4  belongs to the segment  k = 5 covering the range  1/4 < q_{\rm A} ≤ 1/2  From the given equation it follows that with  k = 5:

q_{\rm K}(q_{\rm A}) = 2^{4-k} \cdot q_{\rm A} + {k}/{8}={1}/{2}\cdot 0.4 + {5}/{8} \hspace{0.15cm}\underline {= 0.825}\hspace{0.05cm}.


(2)  The input value of the linear quantizer is now  q_{\rm K} = 0.825, so the following calculation applies:

{105}/{128} < q_{\rm K} = 0.825 \le {106}/{128}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} m = 105 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \mu = 128 + 105\hspace{0.15cm}\underline { = 233} \hspace{0.05cm}.


(3)  According to the specification page, the quantization interval  μ = 128 + m  is given by the value  q_{\rm Q} = 1/256 + m/128  represented.  With  m = 105  it follows:

q_{\rm Q} = \frac{1}{256} + \frac{105}{128} \hspace{0.15cm}\underline {\approx 0.824} \hspace{0.05cm}.


(4)  According to the sample solution to the subtask  (3)  with the input value  q_{\rm A} = 0.04:

\frac{1}{32} < q_{\rm A} \frac{1}{16}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} k = 2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} q_{\rm K} = 2^2 \cdot 0.04 + \frac{2}{8}= 0.41
\Rightarrow \hspace{0.3cm}\frac{52}{128} < q_{\rm K} = 0.41 \le \frac{53}{128}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} m = 52 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \mu = 128 + 52 = 180\hspace{0.3cm} \Rightarrow \hspace{0.3cm}q_{\rm Q} = \frac{1}{256} + \frac{52}{128} \hspace{0.15cm}\underline {= 0.41} \hspace{0.05cm}.


characteristics of compressor (blue) and expander (green)

(5)  We are looking for the solution in several steps:

  • In the compressor has  q_{\rm A} = 0.4  led to the initial value  q_{\rm K} = 0.825  and after quantization to the value  q_{\rm Q} = 0. 824– see subtasks  (1)  and  (3).  Note the red marks in the graph.
  • The graph shows that, on the receiver side, this results in  v_{\rm Q} = 0.824  approximately back to  v_{\rm E} ≈ 0.4  ⇒   brown marks in the graph.


However, due to quantization, this is only an approximation.  Exactly:

v_{\rm E} = 0.25 + \frac{0.824-0.750}{0.875-0.750} \cdot 0.25 \hspace{0.15cm}\underline {= 0.398} \hspace{0.05cm}.

This calculation process can be understood from the graph.  Although the expander characteristic  v_E(υ_{\rm Q})  is equal to the inverse function of the compressor characteristic  q_K(q_{\rm A})  an error results because the input v_{\rm Q} of the expander is discrete in value  (influence of quantization).


(6)  Correct are statements 1 and 4, as can be verified by the following left graph:

13-segment characteristic curves: left:  q_{\rm Q}(q_{\rm A}),           right:  v_{\rm E}(q_{\rm A})
  • The width of each step is different in each segment.
  • In the outermost segment  (k = 6)  the step width is  0.5/16 = 1/32, in the next segment  (k = 5)  only more  0.25/16 = 1/64.
  • The step widths in the further segments are  1/128 \ (k = 4)1/256 \ (k = 3)1/512\ (k = 2)  and  1/1024 \ (k = 1).
  • The innermost range from  -1/64  to  +1/64  is divided into  64  steps, resulting in the step width  1/2048 .
  • The step height, on the other hand, is constantly equal  1/8  divided by  16 = 1/128  in the segments  k ≠ 0  and equal  1/256 in the middle segment.


(7)  Correct here is only the second statement:

  • By the expander, the quantization is now along the bisector of the angle.
  • In each segment, step width and step height are constant.
  • As the right graphic shows, however, in the next inner segment the width and the height are only half as large.