Difference between revisions of "Aufgaben:Exercise 4.2: Low-Pass for Signal Reconstruction"

From LNTwww
Line 64: Line 64:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Only the <u>first statement</u> is correct:  
+
'''(1)'''&nbsp; Only the&nbsp; <u>first statement</u>&nbsp; is correct:  
*Sampling&nbsp; $q_{\rm dis}(t)$&nbsp; with sampling frequency&nbsp; $f_{\rm A} = 8 \ \rm kHz$&nbsp; leads to an irreversible error, since&nbsp; $Q_{\rm dis}(f)$&nbsp; involves a discrete spectral component (diracline) at&nbsp; $f_4 = 4\ \rm kHz$&nbsp; and the phase value&nbsp; $φ_4 ≠ 0$&nbsp; is.  
+
*Sampling&nbsp; $q_{\rm dis}(t)$&nbsp; with sampling frequency&nbsp; $f_{\rm A} = 8 \ \rm kHz$&nbsp; leads to an irreversible error,&nbsp; since&nbsp; $Q_{\rm dis}(f)$&nbsp; involves a discrete spectral component&nbsp; (Dirac line)&nbsp; at&nbsp; $f_4 = 4\ \rm kHz$&nbsp; and the phase value is&nbsp; $φ_4 ≠ 0$.  
*With the phase value given here&nbsp; $φ_4 = 90^\circ$&nbsp; $(4 \ \rm kHz$- sinusoidal component$)$&nbsp; holds&nbsp; $ε_{\rm dis}(t) = v_{\rm dis}(t) - q_{\rm dis}(t) = -0. 4 \ \rm V - \sin(2π \cdot f_4 \cdot t)$.&nbsp; See also sample solution to exercise 4.2Z.  
+
*With the phase value&nbsp; $φ_4 = 90^\circ$&nbsp; $(4 \ \rm kHz$&nbsp; sinusoidal component$)$&nbsp; given here holds&nbsp; $ε_{\rm dis}(t) = v_{\rm dis}(t) - q_{\rm dis}(t) = -0. 4 \ \rm V - \sin(2π \cdot f_4 \cdot t)$.&nbsp; See also solution to Exercise 4.2Z.  
*On the other hand, the signal&nbsp; $q_{\rm kon}(t)$&nbsp; with the continuous spectrum&nbsp; $Q_{\rm con}(f)$&nbsp; can also then be measured with a square-wave low-pass filter&nbsp; $($with cutoff frequency&nbsp; $f_{\rm G} = 4\ \rm kHz)$&nbsp; be completely reconstructed if sampling frequency&nbsp; $f_{\rm A} = 8\ \rm kHz$&nbsp; was used. &nbsp; For all frequencies not equal to&nbsp; $f_4$&nbsp; the sampling theorem is satisfied.  
+
*On the other hand,&nbsp; the signal&nbsp; $q_{\rm con}(t)$&nbsp; with the continuous spectrum&nbsp; $Q_{\rm con}(f)$&nbsp; can also then be measured with a rectangular low-pass filter&nbsp; $($with cutoff frequency&nbsp; $f_{\rm G} = 4\ \rm kHz)$&nbsp; be completely reconstructed if sampling frequency&nbsp; $f_{\rm A} = 8\ \rm kHz$&nbsp; was used. &nbsp; For all frequencies not equal to&nbsp; $f_4$&nbsp; the sampling theorem is satisfied.  
*But the contribution of the&nbsp; $f_4$ component to the total spectrum&nbsp; $Q_{\rm con}(f)$&nbsp; is only vanishingly small &nbsp; ⇒ &nbsp; ${\rm Pr}(f_4) → 0$ as long as the spectrum at&nbsp; $f_4$&nbsp; has no diracline.
+
*The contribution of the&nbsp; $f_4$ component to the total spectrum&nbsp; $Q_{\rm con}(f)$&nbsp; is only vanishingly small &nbsp; ⇒ &nbsp; ${\rm Pr}(f_4) → 0$&nbsp; as long as the spectrum has no Dirac line  at&nbsp; $f_4$.
  
  
  
'''(2)'''&nbsp; Only the <u>proposed solution 1</u> is correct:
+
'''(2)'''&nbsp; Only the&nbsp; <u>proposed solution 1</u>&nbsp; is correct:
 
*With&nbsp; $f_{\rm A} = 10\ \rm kHz$&nbsp; the sampling theorem is satisfied in both cases.
 
*With&nbsp; $f_{\rm A} = 10\ \rm kHz$&nbsp; the sampling theorem is satisfied in both cases.
*With&nbsp; $f_{\rm G} = f_{\rm A} /2$&nbsp; both error signals&nbsp; $ε_{\rm con}(t)$ and $ε_{\rm dis}(t)$ are identically zero.
+
*With&nbsp; $f_{\rm G} = f_{\rm A} /2$&nbsp; both error signals&nbsp; $ε_{\rm con}(t)$&nbsp; and&nbsp; $ε_{\rm dis}(t)$&nbsp; are identically zero.
*In addition, the signal reconstruction also works as long as&nbsp; $f_{\rm G} > 4 \ \rm kHz$&nbsp; and&nbsp; $f_{\rm G} < 6 \ \rm kHz$&nbsp; holds.
+
*In addition,&nbsp; the signal reconstruction also works as long as&nbsp; $f_{\rm G} > 4 \ \rm kHz$&nbsp; and&nbsp; $f_{\rm G} < 6 \ \rm kHz$&nbsp; holds.
  
  
  
'''(3)'''&nbsp; The correct solution here is <u>suggested solution 2</u>:
+
'''(3)'''&nbsp; The correct solution here is&nbsp; <u>suggested solution 2</u>:
*With&nbsp; $f_{\rm G} = 3.5 \ \rm kHz$&nbsp; the lowpass incorrectly removes the&nbsp; $4\ \rm kHz$ component, that is, then holds:
+
*With&nbsp; $f_{\rm G} = 3.5 \ \rm kHz$&nbsp; the low-pass incorrectly removes the&nbsp; $4\ \rm kHz$ component,&nbsp; that is,&nbsp; then holds:
 
:$$ v_{\rm dis}(t) = q_{\rm dis}(t) - 0.4\,{\rm V} \cdot \sin (2 \pi \cdot f_{\rm 4} \cdot t)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} \varepsilon_{\rm dis}(t) = - 0.4\,{\rm V} \cdot \sin (2 \pi \cdot f_{\rm 4} \cdot t)\hspace{0.05cm}.$$
 
:$$ v_{\rm dis}(t) = q_{\rm dis}(t) - 0.4\,{\rm V} \cdot \sin (2 \pi \cdot f_{\rm 4} \cdot t)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} \varepsilon_{\rm dis}(t) = - 0.4\,{\rm V} \cdot \sin (2 \pi \cdot f_{\rm 4} \cdot t)\hspace{0.05cm}.$$
  
  
  
[[File:P_ID1609__Mod_A_4_2d.png|P_ID1609__Mod_A_4_2d.png|right|frame|Signal reconstruction with too large cutoff frequency]]
+
[[File:P_ID1609__Mod_A_4_2d.png|P_ID1609__Mod_A_4_2d.png|right|frame|Signal reconstruction with too large cutoff frequency '''Korrektur''']]
'''(4)'''&nbsp; The correct solution here is <u>suggested solution 3</u>:
+
'''(4)'''&nbsp; The correct solution here is&nbsp; <u>suggested solution 3</u>:
 
*Sampling with&nbsp; $f_{\rm A} = 10\ \rm kHz$&nbsp; yields the periodic spectrum sketched on the right.
 
*Sampling with&nbsp; $f_{\rm A} = 10\ \rm kHz$&nbsp; yields the periodic spectrum sketched on the right.
*The low pass with&nbsp; $f_{\rm G} = 6.5 \ \rm kHz$&nbsp; removes all discrete frequency components with&nbsp; $|f| ≥ 7\ \rm kHz$, but not the&nbsp; $6\ \rm kHz$ component.  
+
*The low-pass with&nbsp; $f_{\rm G} = 6.5 \ \rm kHz$&nbsp; removes all discrete frequency components with&nbsp; $|f| ≥ 7\ \rm kHz$,&nbsp; but not the&nbsp; $6\ \rm kHz$ component.  
  
  
Line 94: Line 94:
 
* the frequency&nbsp; $f_6 = f_{\rm A} - f_4 = 6\ \rm kHz$,
 
* the frequency&nbsp; $f_6 = f_{\rm A} - f_4 = 6\ \rm kHz$,
 
* the amplitude&nbsp; $A_4$ of the&nbsp; $f_4$ component,
 
* the amplitude&nbsp; $A_4$ of the&nbsp; $f_4$ component,
* the phase&nbsp; $φ_{-4} = -φ_4$&nbsp; of the&nbsp; $Q(f)$ component at&nbsp; $f = -f_4$.
+
* the phase&nbsp; $φ_{-4} = -φ_4$&nbsp; of the&nbsp; $Q(f)$&nbsp; component at&nbsp; $f = -f_4$.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 17:03, 7 April 2022

Examples of continuous and discrete spectra Korrektur

We consider in this exercise two different source signals  $q_{\rm con}(t)$  and  $q_{\rm dis}(t)$ whose magnitude spectra  $|Q_{\rm con}(f)|$  and  $|Q_{\rm dis}(f)|$  are plotted.   The highest frequency occurring in the signals is in each case  $4 \rm kHz$.

  • Nothing more is known of the spectral function  $Q_{\rm con}(f)$  than that it is a continuous spectrum,  where:
$$Q_{\rm con}(|f| \le 4\,{\rm kHz}) \ne 0 \hspace{0.05cm}.$$
  • The spectrum  $Q_{\rm dis}(f)$  contains spectral lines at  $±1 \ \rm kHz$,  $±2 \ \rm kHz$,  $±3 \ \rm kHz$  and  $±4 \ \rm kHz$.  Thus:
$$q_{\rm dis}(t) = \sum_{i=1}^{4}C_i \cdot \cos (2 \pi \cdot f_i \cdot t - \varphi_i),$$
Amplitude values:   $C_1 = 1.0 \ \rm V$, $C_2 = 1.8 \ \rm V$, $C_3 = 0.8 \ \rm V$, $C_4 = 0.4 \ \rm V.$
The phase values  $φ_1$,  $φ_2$  and  $φ_3$  are respectively in the range  $±180^\circ$  and it holds  $φ_4 = 90^\circ$.


The signals are each sampled at frequency  $f_{\rm A}$  and immediately fed to an ideal rectangular low-pass filter with cutoff frequency  $f_{\rm G}$  This scenario applies,  for example,  to

  • the interference-free pulse amplitude modulation  $\rm (PAM)$  and
  • the interference-free pulse code modulation  $\rm (PCM)$  at infinitely large quantization stage number  $M$.


The output signal of the  (rectangular)  low-pass filter is called the sink signal  $v(t)$  and for the error signal: 

$$ε(t) = v(t) - q(t).$$

This is different from zero only if the parameters of the sampling  $($sampling frequency $f_{\rm A})$  and/or the signal reconstruction  $($cutoff frequency $f_{\rm G})$  are not dimensioned in the best possible way.



Hints:


Questions

1

Which statements are true for  $f_{\rm A} = 8\ \rm kHz$  and  $f_{\rm G} = 4\ \rm kHz$ ?

The signal  $q_{\rm con}(t)$  can be completely reconstructed:   $ε_{\rm con}(t) = 0$.
The signal  $q_{\rm dis}(t)$  can be completely reconstructed:   $ε_{\rm dis}(t) = 0$.

2

Which statements are true for  $f_{\rm A} = 10\ \rm kHz$  and  $f_{\rm G} = 5\ \rm kHz$ ?

The signal  $q_{\rm dis}(t)$  can be completely reconstructed:   $ε_{\rm dis}(t) = 0$.
$ε_{\rm dis}(t)$  is a harmonic oscillation with  $4 \rm kHz$.
$ε_{\rm dis}(t)$  is a harmonic oscillation with  $6 \rm kHz$.

3

Which statements are true for  $f_{\rm A} = 10\ \rm kHz$  and  $f_{\rm G} = 3.5\ \rm kHz$ ?

The signal  $q_{\rm dis}(t)$  can be completely reconstructed:   $ε_{\rm dis}(t) = 0$.
$ε_{\rm dis}(t)$  is a harmonic oscillation with  $4 \rm kHz$.
$ε_{\rm dis}(t)$  is a harmonic oscillation with  $6 \rm kHz$.

4

Which statements are true for  $f_{\rm A} = 10\ \rm kHz$  and  $f_{\rm G} = 6.5\ \rm kHz$?

The signal  $q_{\rm dis}(t)$  can be completely reconstructed:   $ε_{\rm dis}(t) = 0$.
$ε_{\rm dis}(t)$  is a harmonic oscillation with  $4 \rm kHz$.
$ε_{\rm dis}(t)$  is a harmonic oscillation with  $6 \ \rm kHz$.


Solution

(1)  Only the  first statement  is correct:

  • Sampling  $q_{\rm dis}(t)$  with sampling frequency  $f_{\rm A} = 8 \ \rm kHz$  leads to an irreversible error,  since  $Q_{\rm dis}(f)$  involves a discrete spectral component  (Dirac line)  at  $f_4 = 4\ \rm kHz$  and the phase value is  $φ_4 ≠ 0$.
  • With the phase value  $φ_4 = 90^\circ$  $(4 \ \rm kHz$  sinusoidal component$)$  given here holds  $ε_{\rm dis}(t) = v_{\rm dis}(t) - q_{\rm dis}(t) = -0. 4 \ \rm V - \sin(2π \cdot f_4 \cdot t)$.  See also solution to Exercise 4.2Z.
  • On the other hand,  the signal  $q_{\rm con}(t)$  with the continuous spectrum  $Q_{\rm con}(f)$  can also then be measured with a rectangular low-pass filter  $($with cutoff frequency  $f_{\rm G} = 4\ \rm kHz)$  be completely reconstructed if sampling frequency  $f_{\rm A} = 8\ \rm kHz$  was used.   For all frequencies not equal to  $f_4$  the sampling theorem is satisfied.
  • The contribution of the  $f_4$ component to the total spectrum  $Q_{\rm con}(f)$  is only vanishingly small   ⇒   ${\rm Pr}(f_4) → 0$  as long as the spectrum has no Dirac line at  $f_4$.


(2)  Only the  proposed solution 1  is correct:

  • With  $f_{\rm A} = 10\ \rm kHz$  the sampling theorem is satisfied in both cases.
  • With  $f_{\rm G} = f_{\rm A} /2$  both error signals  $ε_{\rm con}(t)$  and  $ε_{\rm dis}(t)$  are identically zero.
  • In addition,  the signal reconstruction also works as long as  $f_{\rm G} > 4 \ \rm kHz$  and  $f_{\rm G} < 6 \ \rm kHz$  holds.


(3)  The correct solution here is  suggested solution 2:

  • With  $f_{\rm G} = 3.5 \ \rm kHz$  the low-pass incorrectly removes the  $4\ \rm kHz$ component,  that is,  then holds:
$$ v_{\rm dis}(t) = q_{\rm dis}(t) - 0.4\,{\rm V} \cdot \sin (2 \pi \cdot f_{\rm 4} \cdot t)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} \varepsilon_{\rm dis}(t) = - 0.4\,{\rm V} \cdot \sin (2 \pi \cdot f_{\rm 4} \cdot t)\hspace{0.05cm}.$$


Signal reconstruction with too large cutoff frequency Korrektur

(4)  The correct solution here is  suggested solution 3:

  • Sampling with  $f_{\rm A} = 10\ \rm kHz$  yields the periodic spectrum sketched on the right.
  • The low-pass with  $f_{\rm G} = 6.5 \ \rm kHz$  removes all discrete frequency components with  $|f| ≥ 7\ \rm kHz$,  but not the  $6\ \rm kHz$ component.


The error signal  $ε_{\rm dis}(t) = v_{\rm dis}(t) - q_{\rm dis}(t)$  is then a harmonic oscillation with

  • the frequency  $f_6 = f_{\rm A} - f_4 = 6\ \rm kHz$,
  • the amplitude  $A_4$ of the  $f_4$ component,
  • the phase  $φ_{-4} = -φ_4$  of the  $Q(f)$  component at  $f = -f_4$.