Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 4.3: Natural and Discrete Sampling"

From LNTwww
 
(4 intermediate revisions by 2 users not shown)
Line 4: Line 4:
  
 
[[File:EN_Mod_A_4_3.png|right|frame|For natural and discrete sampling]]
 
[[File:EN_Mod_A_4_3.png|right|frame|For natural and discrete sampling]]
Ideal sampling can be described in the time domain by multiplying the analog source signal  q(t)  by a  [[Signal_Representation/Time_Discrete_Signal_Representation#Diracpulse_in_Time_and_in_Frequency_Domain|Diracpulse]]  p_δ(t)  :
+
Ideal sampling can be described in time domain by multiplying the analog source signal  q(t)  by a  [[Signal_Representation/Time_Discrete_Signal_Representation#Diracpulse_in_Time_and_in_Frequency_Domain|Dirac comb]]  p_δ(t)  :
 
: q_{\rm A}(t) = p_{\delta}(t) \cdot q(t) \hspace{0.05cm}.
 
: q_{\rm A}(t) = p_{\delta}(t) \cdot q(t) \hspace{0.05cm}.
Dirac pulses - infinitely narrow and infinitely high - and accordingly also the Dirac pulse  p_δ(t)  cannot be realized in practice, however.  Here we must assume instead the square pulse  p_{\rm R}(t)  where the following relation holds:
+
Dirac impulses  – infinitely narrow and infinitely high –  and accordingly also the  "Dirac comb"  p_δ(t)  cannot be realized in practice,  however.   
:$$ p_{\rm R}(t) = \left [ \frac{1}{T_{\rm A}} \cdot p_{\rm \delta}(t) \right ]\star g_{\rm R}(t)\hspace{0.9cm}\text{with}\hspace{0.9cm}
+
 
  g_{\rm R}(t) = \left\{ \begin{array}{l} 1 \ 1/2 \ 0 \ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{f\ddot{u}r}} \\{\rm{f\ddot{u}r}} \\{\rm{f\ddot{u}r}} \end{array}\begin{array}{*{10}c} {\hspace{0.04cm}\left|\hspace{0.06cm} t \hspace{0.05cm} \right|} < T_{\rm R}/2\hspace{0.05cm}, \ {\hspace{0.04cm}\left|\hspace{0.06cm} t \hspace{0.05cm} \right|} = T_{\rm R}/2\hspace{0.05cm}, \ {\hspace{0.005cm}\left|\hspace{0.06cm} t \hspace{0.05cm} \right|} > T_{\rm R}/2\hspace{0.05cm}. \hspace{0.05cm} \end{array}$$
+
Here we must assume instead the&nbsp; "rectangular pulse comb" &nbsp;p_{\rm R}(t)&nbsp; where the following relation holds:
 +
:$$ p_{\rm R}(t) = \left [ \frac{1}{T_{\rm A}} \cdot p_{\rm \delta}(t) \right ]\star g_{\rm R}(t)\hspace{0.4cm}\text{with}\hspace{0.4cm}
 +
  g_{\rm R}(t) = \left\{ \begin{array}{l} 1 \\ 1/2 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{f\ddot{u}r}} \\{\rm{f\ddot{u}r}} \\{\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{10}c} {\hspace{0.04cm}\left|\hspace{0.06cm} t \hspace{0.05cm} \right|} < T_{\rm R}/2\hspace{0.05cm}, \\ {\hspace{0.04cm}\left|\hspace{0.06cm} t \hspace{0.05cm} \right|} = T_{\rm R}/2\hspace{0.05cm}, \\ {\hspace{0.005cm}\left|\hspace{0.06cm} t \hspace{0.05cm} \right|} > T_{\rm R}/2\hspace{0.05cm}. \\ \end{array}$$
 
The duration &nbsp;T_{\rm R}&nbsp; of a rectangular pulse &nbsp;g_{\rm R}(t)&nbsp; should be (significantly) smaller than the distance T_{\rm A} of two samples.  
 
The duration &nbsp;T_{\rm R}&nbsp; of a rectangular pulse &nbsp;g_{\rm R}(t)&nbsp; should be (significantly) smaller than the distance T_{\rm A} of two samples.  
  
In the diagram this ratio is chosen very large with&nbsp; T_{\rm R}/T_{\rm A} = 0.5&nbsp; to make the difference between&nbsp; "natural sampling"&nbsp; and&nbsp; "discrete sampling"&nbsp; especially clear:
+
In the diagram this ratio is chosen with&nbsp; T_{\rm R}/T_{\rm A} = 0.5&nbsp; very large to make the difference between&nbsp; "natural sampling"&nbsp; and&nbsp; "discrete sampling"&nbsp; especially clear:
* In natural sampling, the sampled signal &nbsp;q_{\rm A}(t)&nbsp; is equal to the product of square pulse &nbsp;p_{\rm R}(t)&nbsp; and analog source signal &nbsp;q(t):
+
* In natural sampling,&nbsp; the sampled signal &nbsp;q_{\rm A}(t)&nbsp; is equal to the product of the rectangular pulse comb &nbsp;p_{\rm R}(t)&nbsp; and the analog source signal &nbsp;q(t):
 
:q_{\rm A}(t) = p_{\rm R}(t) \cdot q(t) = \left [ \frac{1}{T_{\rm A}} \cdot p_{\rm \delta}(t) \star g_{\rm R}(t)\right ]\cdot q(t)\hspace{0.05cm}.
 
:q_{\rm A}(t) = p_{\rm R}(t) \cdot q(t) = \left [ \frac{1}{T_{\rm A}} \cdot p_{\rm \delta}(t) \star g_{\rm R}(t)\right ]\cdot q(t)\hspace{0.05cm}.
* In contrast, the corresponding equation for discrete sampling is:
+
* In contrast,&nbsp; the corresponding equation for discrete sampling is:
 
: q_{\rm A}(t) = \left [ \frac{1}{T_{\rm A}} \cdot p_{\rm \delta}(t) \cdot q(t)\right ]\star g_{\rm R}(t)\hspace{0.05cm}.
 
: q_{\rm A}(t) = \left [ \frac{1}{T_{\rm A}} \cdot p_{\rm \delta}(t) \cdot q(t)\right ]\star g_{\rm R}(t)\hspace{0.05cm}.
  
In the graph, these signals are sketched in blue&nbsp; (natural sampling)&nbsp; and green&nbsp; (discrete sampling)&nbsp; respectively.
+
In the graph,&nbsp; these signals are sketched in blue&nbsp; (natural sampling)&nbsp; and green&nbsp; (discrete sampling)&nbsp; respectively.
 
 
For signal reconstruction, a rectangular low-pass filter&nbsp; H(f)&nbsp; with cutoff frequency&nbsp; f_{\rm G} = f_{\rm A}/2&nbsp; and gain&nbsp; T_{\rm A}/T_{\rm R}&nbsp; is used in the passband:
 
:H(f) = \left\{ \begin{array}{l} T_{\rm A}/T_{\rm R} \ 0 \end{array} \right.\quad \begin{array}{*{5}c}{\rm{f\ddot{u}r}} \\{\rm{f\ddot{u}r}} \end{array}\begin{array}{*{10}c} {\hspace{0.04cm}\left| \hspace{0.005cm} f\hspace{0.05cm} \right| < f_{\rm A}/2}\hspace{0.05cm}, \ {\hspace{0.04cm}\left| \hspace{0.005cm} f\hspace{0.05cm} \right| > f_{\rm A}/2}\hspace{0.05cm}. \end{array}
 
 
 
 
 
 
 
 
 
 
 
  
 +
For signal reconstruction,&nbsp; a rectangular low-pass filter&nbsp; H(f)&nbsp; with cutoff frequency&nbsp; f_{\rm G} = f_{\rm A}/2&nbsp; and gain&nbsp; T_{\rm A}/T_{\rm R}&nbsp; is used in the passband:
 +
:H(f) = \left\{ \begin{array}{l} T_{\rm A}/T_{\rm R} \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{f\ddot{u}r}} \\{\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{10}c} {\hspace{0.04cm}\left| \hspace{0.005cm} f\hspace{0.05cm} \right| < f_{\rm A}/2}\hspace{0.05cm}, \\ {\hspace{0.04cm}\left| \hspace{0.005cm} f\hspace{0.05cm} \right| > f_{\rm A}/2}\hspace{0.05cm}. \\ \end{array}
  
  
  
 
Hints:
 
Hints:
*The exercise belongs to the chapter&nbsp; [[Modulation_Methods/Pulse_Code_Modulation|Puls Code Modulation]].
+
*The exercise belongs to the chapter&nbsp; [[Modulation_Methods/Pulse_Code_Modulation|"Pulse Code Modulation"]].
*Reference is made in particular to the page&nbsp; [[Modulation_Methods/Pulse_Code_Modulation#Natural_and_discrete_sampling|Natural and discrete sampling]].
+
*Reference is made in particular to the page&nbsp; [[Modulation_Methods/Pulse_Code_Modulation#Natural_and_discrete_sampling|"Natural and discrete sampling"]].
 
*The sampled source signal is denoted by&nbsp; q_{\rm A}(t)&nbsp; and its spectral function by&nbsp; Q_{\rm A}(f).
 
*The sampled source signal is denoted by&nbsp; q_{\rm A}(t)&nbsp; and its spectral function by&nbsp; Q_{\rm A}(f).
* Sampling is always performed at&nbsp; $ν - T_{\rm A}$.
+
* Sampling is always performed at&nbsp; $ν \cdot T_{\rm A}$.
 
   
 
   
  
Line 42: Line 38:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Let &nbsp;T_{\rm R}/T_{\rm A} = 0.5.&nbsp; For this, give the normalized spectrum &nbsp;G_{\rm R}(f)/T_{\rm A}&nbsp; What spectral value occurs at &nbsp;f = 0&nbsp;?
+
{Let &nbsp;T_{\rm R}/T_{\rm A} = 0.5.&nbsp; For this,&nbsp; give the normalized spectrum &nbsp;G_{\rm R}(f)/T_{\rm A}.&nbsp; What spectral value occurs at &nbsp;f = 0&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
G_{\rm R}(f=0)/T_{\rm A} \ = \ { 0.5 3% }  
 
G_{\rm R}(f=0)/T_{\rm A} \ = \ { 0.5 3% }  
Line 49: Line 45:
 
|type="[]"}
 
|type="[]"}
 
- It holds &nbsp;Q_{\rm A}(f) = P_{\rm δ}(f) ∗ Q(f).
 
- It holds &nbsp;Q_{\rm A}(f) = P_{\rm δ}(f) ∗ Q(f).
+ It holds &nbsp;$Q_{\rm A}(f) = \big[{\rm δ}(f) - (G_{\rm R}(f)/T_{\rm A})\big] ∗ Q(f)$.
+
+ It holds &nbsp;$Q_{\rm A}(f) = \big[{\rm δ}(f) \cdot (G_{\rm R}(f)/T_{\rm A})\big] ∗ Q(f)$.
- It holds &nbsp;$Q_{\rm A}(f) = \big[P_{\rm δ}(f) ∗ Q(f)\big] - (G_{\rm R}(f)/T_{\rm A})$.
+
- It holds &nbsp;$Q_{\rm A}(f) = \big[P_{\rm δ}(f) ∗ Q(f)\big] \cdot (G_{\rm R}(f)/T_{\rm A})$.
  
{ For natural sampling, is the specified low-pass suitable for interpolation?
+
{ For natural sampling:&nbsp; Is the specified low-pass suitable for interpolation?
 
|type="()"}
 
|type="()"}
 
+ Yes.  
 
+ Yes.  
Line 60: Line 56:
 
|type="[]"}
 
|type="[]"}
 
- It holds &nbsp;Q_{\rm A}(f) = P_{\rm δ}(f) ∗ Q(f).
 
- It holds &nbsp;Q_{\rm A}(f) = P_{\rm δ}(f) ∗ Q(f).
- It holds &nbsp;$Q_{\rm A}(f) = \big[{\rm δ}(f) - (G_{\rm R}(f)/T_{\rm A})\big] ∗ Q(f)$.
+
- It holds &nbsp;$Q_{\rm A}(f) = \big[{\rm δ}(f) \cdot (G_{\rm R}(f)/T_{\rm A})\big] ∗ Q(f)$.
+ It holds &nbsp;$Q_{\rm A}(f) = \big[P_{\rm δ}(f) ∗ Q(f)\big] - (G_{\rm R}(f)/T_{\rm A})$.
+
+ It holds &nbsp;$Q_{\rm A}(f) = \big[P_{\rm δ}(f) ∗ Q(f)\big] \cdot (G_{\rm R}(f)/T_{\rm A})$.
  
{For discrete sampling, is the specified low-pass suitable for interpolation?
+
{For discrete sampling:&nbsp; Is the specified low-pass suitable for interpolation?
 
|type="()"}
 
|type="()"}
 
- Yes.  
 
- Yes.  
Line 72: Line 68:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; The spectrum of the square pulse&nbsp; g_{\rm R}(t)&nbsp; with amplitude&nbsp; 1&nbsp; and duration&nbsp; T_{\rm R}&nbsp; is:
+
'''(1)'''&nbsp; The spectrum of the rectangular pulse&nbsp; g_{\rm R}(t)&nbsp; with amplitude&nbsp; 1&nbsp; and duration&nbsp; T_{\rm R}&nbsp; is:
:$$ G_{\rm R}(f) = T_{\rm R} \cdot {\rm si}(\pi f T_{\rm R}) \hspace{0.3cm} {\rm with}\hspace{0.3cm} {\rm si}(x) = \sin(x)/x \hspace{0.3cm}  
+
:$$ G_{\rm R}(f) = T_{\rm R} \cdot {\rm sinc}(f T_{\rm R}) \hspace{0.3cm} {\rm with}\hspace{0.3cm} {\rm sinc}(x) = \sin(\pi x)/(\pi x)\hspace{0.3cm}  
\rightarrow \hspace{0.3cm} \frac{G_{\rm R}(f)}{T_{\rm A}} = \frac{T_{\rm R}}{T_{\rm A}} \cdot {\rm si}(\pi f T_{\rm R})$$
+
\Rightarrow \hspace{0.3cm} \frac{G_{\rm R}(f)}{T_{\rm A}} = \frac{T_{\rm R}}{T_{\rm A}} \cdot {\rm sinc}(f T_{\rm R})\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac{G_{\rm R}(f = 0)}{T_{\rm A}} =\frac{T_{\rm R}}{T_{\rm A}}\hspace{0.15cm}\underline { = 0.5} \hspace{0.05cm}.$$
:$$ \rightarrow \hspace{0.3cm} \frac{G_{\rm R}(f = 0)}{T_{\rm A}} =\frac{T_{\rm R}}{T_{\rm A}}\hspace{0.15cm}\underline { = 0.5} \hspace{0.05cm}.$$
 
 
 
  
  
'''(2)'''&nbsp; The correct solution is the <u>second suggested solution</u>:  
+
'''(2)'''&nbsp; The correct solution is the&nbsp; <u>second suggested solution</u>:  
*From the given equation in the time domain, the convolution theorem gives:
+
*From the given equation in the time domain,&nbsp; the convolution theorem gives:
 
:$$q_{\rm A}(t) = \left [ \frac{1}{T_{\rm A}} \cdot p_{\rm \delta}(t) \star g_{\rm R}(t)\right ]\cdot q(t) \hspace{0.3cm}
 
:$$q_{\rm A}(t) = \left [ \frac{1}{T_{\rm A}} \cdot p_{\rm \delta}(t) \star g_{\rm R}(t)\right ]\cdot q(t) \hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm}Q_{\rm A}(f) = \left [ \frac{1}{T_{\rm A}}\cdot P_{\rm \delta}(f) \cdot G_{\rm R}(f) \right ] \star Q(f) = \left [ P_{\rm \delta}(f) \cdot \frac{G_{\rm R}(f)}{{T_{\rm A}}} \right ] \star Q(f) \hspace{0.05cm}.$$
 
\Rightarrow \hspace{0.3cm}Q_{\rm A}(f) = \left [ \frac{1}{T_{\rm A}}\cdot P_{\rm \delta}(f) \cdot G_{\rm R}(f) \right ] \star Q(f) = \left [ P_{\rm \delta}(f) \cdot \frac{G_{\rm R}(f)}{{T_{\rm A}}} \right ] \star Q(f) \hspace{0.05cm}.$$
*The first proposed solution is valid only for ideal sampling&nbsp; (with a Dirac pulse)&nbsp; and the last one for discrete sampling.
+
*The first proposed solution is valid only for ideal sampling &nbsp; (with a Dirac comb) &nbsp; and the last one for discrete sampling.
 
 
  
  
  
'''(3)'''&nbsp; The answer is <u>YES</u>:
+
'''(3)'''&nbsp; The answer is&nbsp; <u>YES</u>:
* Starting from the result of the subtask&nbsp; '''(2)'''&nbsp; using the spectral function of the Dirac pulse, we obtain.
+
* Starting from the result of the subtask&nbsp; '''(2)'''&nbsp; using the spectral function of the Dirac comb,&nbsp; we obtain.
 
:Q_{\rm A}(f) = \left [ P_{\rm \delta}(f) \cdot \frac{G_{\rm R}(f)}{{T_{\rm A}}} \right ] \star Q(f)= \left [ \frac{G_{\rm R}(f)}{{T_{\rm A}}} \cdot \sum_{\mu = -\infty}^{+\infty} \delta(f - \mu \cdot f_{\rm A})\right ] \star Q(f) \hspace{0.05cm}.
 
:Q_{\rm A}(f) = \left [ P_{\rm \delta}(f) \cdot \frac{G_{\rm R}(f)}{{T_{\rm A}}} \right ] \star Q(f)= \left [ \frac{G_{\rm R}(f)}{{T_{\rm A}}} \cdot \sum_{\mu = -\infty}^{+\infty} \delta(f - \mu \cdot f_{\rm A})\right ] \star Q(f) \hspace{0.05cm}.
*When the sampling theorem is satisfied and the low-pass filter is correct, of the infinite convolution products, only the convolution product with&nbsp; μ = 0&nbsp; lie in the passband.  
+
*When the sampling theorem is satisfied and the low-pass filter is correct:&nbsp; <br>From the infinite convolution products&nbsp; only the convolution product with&nbsp; μ = 0&nbsp; lie in the passband.  
*Taking into account the gain factor&nbsp; T_{\rm A}/T_{\rm R}&nbsp; we thus obtain for the spectrum at the filter output:
+
*Taking into account the gain factor&nbsp; T_{\rm A}/T_{\rm R},&nbsp; we thus obtain for the spectrum at the filter output:
:$$V(f) = \frac{T_{\rm A}}{T_{\rm R}} \cdot \left [ \frac{G_{\rm R}(f = 0)}{{T_{\rm A}} \cdot \delta(f )\right ] \star Q(f)= Q(f) \hspace{0.05cm}.$$
+
:$$V(f) = \frac{T_{\rm A}}{T_{\rm R}} \cdot \left [ \frac{G_{\rm R}(f = 0)}{{T_{\rm A}}} \cdot \delta(f )\right ] \star Q(f)= Q(f) \hspace{0.05cm}.$$
  
  
  
'''(4)'''&nbsp; The<u> last suggested solution</u> is correct.  
+
'''(4)'''&nbsp; The&nbsp; <u>last suggested solution</u>&nbsp; is correct.  
*Shifting the factor&nbsp; 1/T_{\rm A}&nbsp; to the rectangular pulse, we obtain with discrete sampling using the convolution theorem:
+
*Shifting the factor&nbsp; 1/T_{\rm A}&nbsp; to the rectangular pulse,&nbsp; we obtain with discrete sampling using the convolution theorem:
 
:$$ q_{\rm A}(t) = \big [ p_{\rm \delta}(t)\cdot q(t) \big ] \star \frac{g_{\rm R}(t)}{T_{\rm A}}\hspace{0.3cm}
 
:$$ q_{\rm A}(t) = \big [ p_{\rm \delta}(t)\cdot q(t) \big ] \star \frac{g_{\rm R}(t)}{T_{\rm A}}\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm}Q_{\rm A}(f)= \big [ P_{\rm \delta}(f)\star Q(f) \big ] \cdot \frac{G_{\rm R}(f)}{T_{\rm A}}\hspace{0.05cm}.$$
 
\Rightarrow \hspace{0.3cm}Q_{\rm A}(f)= \big [ P_{\rm \delta}(f)\star Q(f) \big ] \cdot \frac{G_{\rm R}(f)}{T_{\rm A}}\hspace{0.05cm}.$$
  
  
'''(5)'''&nbsp; The answer is <u>NO</u>:
+
'''(5)'''&nbsp; The answer is&nbsp; <u>NO</u>:
 
*The weighting function&nbsp; G_{\rm R}(f)&nbsp; now involves the inner kernel&nbsp; (μ = 0)&nbsp; of the convolution product.  
 
*The weighting function&nbsp; G_{\rm R}(f)&nbsp; now involves the inner kernel&nbsp; (μ = 0)&nbsp; of the convolution product.  
*All other terms&nbsp; (μ ≠ 0)&nbsp; are eliminated by the low-pass filter.&nbsp; One obtains here in the relevant range&nbsp; |f| < f_{\rm A}/2:
+
*All other terms&nbsp; (μ ≠ 0)&nbsp; are eliminated by the low-pass filter.&nbsp;  
:$$V(f) = \frac{T_{\rm A}}{T_{\rm R}} \cdot \frac{G_{\rm R}(f )}{{T_{\rm A}}} \cdot Q(f) = 2 \cdot 0.5 \cdot {\rm si}(\pi f T_{\rm R})\cdot Q(f) \hspace{0.3cm}\Rightarrow \hspace{0.3cm}V(f) = Q(f) \cdot {\rm si}(\pi f T_{\rm R})\hspace{0.05cm}.$$
+
*One obtains here in the relevant range&nbsp; |f| < f_{\rm A}/2:
*If no additional equalization is provided here, the higher frequencies are attenuated according to the&nbsp; $\rm si$ function.  
+
:$$V(f) = \frac{T_{\rm A}}{T_{\rm R}} \cdot \frac{G_{\rm R}(f )}{{T_{\rm A}}} \cdot Q(f) = 2 \cdot 0.5 \cdot {\rm sinc}(f T_{\rm R})\cdot Q(f) \hspace{0.3cm}\Rightarrow \hspace{0.3cm}V(f) = Q(f) \cdot {\rm sinc}(f T_{\rm R})\hspace{0.05cm}.$$
 +
*If no additional equalization is provided here, the higher frequencies are attenuated according to the&nbsp; $\rm sinc$ function.  
 
*The highest&nbsp; signal frequency&nbsp; (f = f_{\rm A}/2)&nbsp; is attenuated the most here:
 
*The highest&nbsp; signal frequency&nbsp; (f = f_{\rm A}/2)&nbsp; is attenuated the most here:
:$$V(f = \frac{f_{\rm A}}{2}) = Q( \frac{f_{\rm A}}{2}) \cdot {\rm si}(\pi \cdot \frac{T_{\rm R}}{2 \cdot T_{\rm A}})=
+
:$$V(f = f_{\rm A}/2) = Q( f_{\rm A}/2) \cdot {\rm sinc}( \frac{T_{\rm R}}{2 \cdot T_{\rm A}})=
  Q( \frac{f_{\rm A}}{2}) \cdot {\rm si}(\pi \cdot \frac{\sin(\pi/4)}{\pi/4})\approx 0.9 \cdot Q( \frac{f_{\rm A}}{2}) \hspace{0.05cm}.$$
+
  Q( f_{\rm A}/2) \cdot \frac{\sin(\pi/4)}{\pi/4}\approx 0.9 \cdot Q( f_{\rm A}/2) \hspace{0.05cm}.$$
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Latest revision as of 17:13, 8 April 2022

For natural and discrete sampling

Ideal sampling can be described in time domain by multiplying the analog source signal  q(t)  by a  Dirac comb  p_δ(t)  :

q_{\rm A}(t) = p_{\delta}(t) \cdot q(t) \hspace{0.05cm}.

Dirac impulses  – infinitely narrow and infinitely high –  and accordingly also the  "Dirac comb"  p_δ(t)  cannot be realized in practice,  however. 

Here we must assume instead the  "rectangular pulse comb"  p_{\rm R}(t)  where the following relation holds:

p_{\rm R}(t) = \left [ \frac{1}{T_{\rm A}} \cdot p_{\rm \delta}(t) \right ]\star g_{\rm R}(t)\hspace{0.4cm}\text{with}\hspace{0.4cm} g_{\rm R}(t) = \left\{ \begin{array}{l} 1 \\ 1/2 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{f\ddot{u}r}} \\{\rm{f\ddot{u}r}} \\{\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{10}c} {\hspace{0.04cm}\left|\hspace{0.06cm} t \hspace{0.05cm} \right|} < T_{\rm R}/2\hspace{0.05cm}, \\ {\hspace{0.04cm}\left|\hspace{0.06cm} t \hspace{0.05cm} \right|} = T_{\rm R}/2\hspace{0.05cm}, \\ {\hspace{0.005cm}\left|\hspace{0.06cm} t \hspace{0.05cm} \right|} > T_{\rm R}/2\hspace{0.05cm}. \\ \end{array}

The duration  T_{\rm R}  of a rectangular pulse  g_{\rm R}(t)  should be (significantly) smaller than the distance T_{\rm A} of two samples.

In the diagram this ratio is chosen with  T_{\rm R}/T_{\rm A} = 0.5  very large to make the difference between  "natural sampling"  and  "discrete sampling"  especially clear:

  • In natural sampling,  the sampled signal  q_{\rm A}(t)  is equal to the product of the rectangular pulse comb  p_{\rm R}(t)  and the analog source signal  q(t):
q_{\rm A}(t) = p_{\rm R}(t) \cdot q(t) = \left [ \frac{1}{T_{\rm A}} \cdot p_{\rm \delta}(t) \star g_{\rm R}(t)\right ]\cdot q(t)\hspace{0.05cm}.
  • In contrast,  the corresponding equation for discrete sampling is:
q_{\rm A}(t) = \left [ \frac{1}{T_{\rm A}} \cdot p_{\rm \delta}(t) \cdot q(t)\right ]\star g_{\rm R}(t)\hspace{0.05cm}.

In the graph,  these signals are sketched in blue  (natural sampling)  and green  (discrete sampling)  respectively.

For signal reconstruction,  a rectangular low-pass filter  H(f)  with cutoff frequency  f_{\rm G} = f_{\rm A}/2  and gain  T_{\rm A}/T_{\rm R}  is used in the passband:

H(f) = \left\{ \begin{array}{l} T_{\rm A}/T_{\rm R} \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{f\ddot{u}r}} \\{\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{10}c} {\hspace{0.04cm}\left| \hspace{0.005cm} f\hspace{0.05cm} \right| < f_{\rm A}/2}\hspace{0.05cm}, \\ {\hspace{0.04cm}\left| \hspace{0.005cm} f\hspace{0.05cm} \right| > f_{\rm A}/2}\hspace{0.05cm}. \\ \end{array}


Hints:

  • The exercise belongs to the chapter  "Pulse Code Modulation".
  • Reference is made in particular to the page  "Natural and discrete sampling".
  • The sampled source signal is denoted by  q_{\rm A}(t)  and its spectral function by  Q_{\rm A}(f).
  • Sampling is always performed at  ν \cdot T_{\rm A}.



Questions

1

Let  T_{\rm R}/T_{\rm A} = 0.5.  For this,  give the normalized spectrum  G_{\rm R}(f)/T_{\rm A}.  What spectral value occurs at  f = 0 ?

G_{\rm R}(f=0)/T_{\rm A} \ = \

2

What is the spectrum  Q_{\rm A}(f)  in natural sampling?  Suggestions:

It holds  Q_{\rm A}(f) = P_{\rm δ}(f) ∗ Q(f).
It holds  Q_{\rm A}(f) = \big[{\rm δ}(f) \cdot (G_{\rm R}(f)/T_{\rm A})\big] ∗ Q(f).
It holds  Q_{\rm A}(f) = \big[P_{\rm δ}(f) ∗ Q(f)\big] \cdot (G_{\rm R}(f)/T_{\rm A}).

3

For natural sampling:  Is the specified low-pass suitable for interpolation?

Yes.
No.

4

What is the spectrum  Q_{\rm A}(f)  for discrete sampling?  Suggestions:

It holds  Q_{\rm A}(f) = P_{\rm δ}(f) ∗ Q(f).
It holds  Q_{\rm A}(f) = \big[{\rm δ}(f) \cdot (G_{\rm R}(f)/T_{\rm A})\big] ∗ Q(f).
It holds  Q_{\rm A}(f) = \big[P_{\rm δ}(f) ∗ Q(f)\big] \cdot (G_{\rm R}(f)/T_{\rm A}).

5

For discrete sampling:  Is the specified low-pass suitable for interpolation?

Yes.
No.


Solution

(1)  The spectrum of the rectangular pulse  g_{\rm R}(t)  with amplitude  1  and duration  T_{\rm R}  is:

G_{\rm R}(f) = T_{\rm R} \cdot {\rm sinc}(f T_{\rm R}) \hspace{0.3cm} {\rm with}\hspace{0.3cm} {\rm sinc}(x) = \sin(\pi x)/(\pi x)\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac{G_{\rm R}(f)}{T_{\rm A}} = \frac{T_{\rm R}}{T_{\rm A}} \cdot {\rm sinc}(f T_{\rm R})\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac{G_{\rm R}(f = 0)}{T_{\rm A}} =\frac{T_{\rm R}}{T_{\rm A}}\hspace{0.15cm}\underline { = 0.5} \hspace{0.05cm}.


(2)  The correct solution is the  second suggested solution:

  • From the given equation in the time domain,  the convolution theorem gives:
q_{\rm A}(t) = \left [ \frac{1}{T_{\rm A}} \cdot p_{\rm \delta}(t) \star g_{\rm R}(t)\right ]\cdot q(t) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}Q_{\rm A}(f) = \left [ \frac{1}{T_{\rm A}}\cdot P_{\rm \delta}(f) \cdot G_{\rm R}(f) \right ] \star Q(f) = \left [ P_{\rm \delta}(f) \cdot \frac{G_{\rm R}(f)}{{T_{\rm A}}} \right ] \star Q(f) \hspace{0.05cm}.
  • The first proposed solution is valid only for ideal sampling   (with a Dirac comb)   and the last one for discrete sampling.


(3)  The answer is  YES:

  • Starting from the result of the subtask  (2)  using the spectral function of the Dirac comb,  we obtain.
Q_{\rm A}(f) = \left [ P_{\rm \delta}(f) \cdot \frac{G_{\rm R}(f)}{{T_{\rm A}}} \right ] \star Q(f)= \left [ \frac{G_{\rm R}(f)}{{T_{\rm A}}} \cdot \sum_{\mu = -\infty}^{+\infty} \delta(f - \mu \cdot f_{\rm A})\right ] \star Q(f) \hspace{0.05cm}.
  • When the sampling theorem is satisfied and the low-pass filter is correct: 
    From the infinite convolution products  only the convolution product with  μ = 0  lie in the passband.
  • Taking into account the gain factor  T_{\rm A}/T_{\rm R},  we thus obtain for the spectrum at the filter output:
V(f) = \frac{T_{\rm A}}{T_{\rm R}} \cdot \left [ \frac{G_{\rm R}(f = 0)}{{T_{\rm A}}} \cdot \delta(f )\right ] \star Q(f)= Q(f) \hspace{0.05cm}.


(4)  The  last suggested solution  is correct.

  • Shifting the factor  1/T_{\rm A}  to the rectangular pulse,  we obtain with discrete sampling using the convolution theorem:
q_{\rm A}(t) = \big [ p_{\rm \delta}(t)\cdot q(t) \big ] \star \frac{g_{\rm R}(t)}{T_{\rm A}}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}Q_{\rm A}(f)= \big [ P_{\rm \delta}(f)\star Q(f) \big ] \cdot \frac{G_{\rm R}(f)}{T_{\rm A}}\hspace{0.05cm}.


(5)  The answer is  NO:

  • The weighting function  G_{\rm R}(f)  now involves the inner kernel  (μ = 0)  of the convolution product.
  • All other terms  (μ ≠ 0)  are eliminated by the low-pass filter. 
  • One obtains here in the relevant range  |f| < f_{\rm A}/2:
V(f) = \frac{T_{\rm A}}{T_{\rm R}} \cdot \frac{G_{\rm R}(f )}{{T_{\rm A}}} \cdot Q(f) = 2 \cdot 0.5 \cdot {\rm sinc}(f T_{\rm R})\cdot Q(f) \hspace{0.3cm}\Rightarrow \hspace{0.3cm}V(f) = Q(f) \cdot {\rm sinc}(f T_{\rm R})\hspace{0.05cm}.
  • If no additional equalization is provided here, the higher frequencies are attenuated according to the  \rm sinc function.
  • The highest  signal frequency  (f = f_{\rm A}/2)  is attenuated the most here:
V(f = f_{\rm A}/2) = Q( f_{\rm A}/2) \cdot {\rm sinc}( \frac{T_{\rm R}}{2 \cdot T_{\rm A}})= Q( f_{\rm A}/2) \cdot \frac{\sin(\pi/4)}{\pi/4}\approx 0.9 \cdot Q( f_{\rm A}/2) \hspace{0.05cm}.