Difference between revisions of "Aufgaben:Exercise 3.3Z: Characteristics Determination"

From LNTwww
m
 
(20 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Phasenmodulation (PM)
+
{{quiz-Header|Buchseite=Modulation_Methods/Phase_Modulation_(PM)
 
}}
 
}}
  
[[File:P_ID1085__Mod_Z_3_3.png|right|frame|Spektrum des analytischen Signals]]
+
[[File:P_ID1085__Mod_Z_3_3.png|right|frame|Spectrum of the analytical signal]]
Wir betrachten die Phasenmodulation der harmonischen Schwingung
+
Let us consider the phase modulation of the harmonic oscillation
 
:$$q(t) = A_{\rm N} \cdot \cos(2 \pi \cdot f_{\rm N} \cdot t + \phi_{\rm N}) \hspace{0.05cm},$$
 
:$$q(t) = A_{\rm N} \cdot \cos(2 \pi \cdot f_{\rm N} \cdot t + \phi_{\rm N}) \hspace{0.05cm},$$
die bei Voraussetzung einer normierten Trägeramplitude ($A_{\rm T} = 1$) zu folgendem Sendesignal führt:
+
which, given a normalized carrier amplitude  $(A_{\rm T} = 1)$ , leads to the following transmitted signal:
:$$ s(t) = \cos \left(\omega_{\rm T} \cdot t + K_{\rm PM} \cdot q(t) \right)\hspace{0.05cm}.$$
+
:$$ s(t) = \cos \hspace{-0.1cm}\big[\omega_{\rm T} \cdot t + K_{\rm PM} \cdot q(t) \big]\hspace{0.05cm}.$$
Das Spektrum des dazugehörigen analytischen Signals $s_{\rm TP}(t)$ lautet allgemein:
+
The spectrum of the corresponding analytical signal $s_{\rm TP}(t)$  is generally:
 
:$$S_{\rm TP}(f) = \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}n\hspace{0.05cm}\cdot \hspace{0.05cm}(\phi_{\rm N}\hspace{0.05cm}+\hspace{0.05cm} 90^\circ) }\cdot \hspace{0.05cm} \delta (f - n \cdot f_{\rm N})\hspace{0.05cm}$$
 
:$$S_{\rm TP}(f) = \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}n\hspace{0.05cm}\cdot \hspace{0.05cm}(\phi_{\rm N}\hspace{0.05cm}+\hspace{0.05cm} 90^\circ) }\cdot \hspace{0.05cm} \delta (f - n \cdot f_{\rm N})\hspace{0.05cm}$$
Hierbei bezeichnet man $η = K_{\rm PM} · A_{\rm N}$ als den Modulationsindex.
+
Here,  $η = K_{\rm PM} · A_{\rm N}$  is called the modulation index.
  
In der Grafik ist das Spektrum $S_+(f)$ des analytischen Signals $s_+(t)$ getrennt nach Real- und Imaginärteil dargestellt. Aus diesem sollen die Kenngrößen $f_{\rm T}$, $f_{\rm N}$, $ϕ_{\rm N}$ und $η$ ermittelt werden.
+
In the graph, the real and imaginary parts of the spectrum  $S_+(f)$  of the analytical signal  $s_+(t)$ are shown separately. This should be used to determine the characteristics  $f_{\rm T}$,  $f_{\rm N}$,  $ϕ_{\rm N}$  and  $η$ .
  
  
''Hinweise:''  
+
 
*Die Aufgabe gehört zum  Kapitel [[Modulationsverfahren/Phasenmodulation_(PM)|Phasenmodulation]].
+
 
*Bezug genommen wird insbesondere auf die Seite [[Modulationsverfahren/Phasenmodulation_(PM)#.C3.84quivalentes_TP.E2.80.93Signal_bei_Phasenmodulation|Äquivalentes Tiefpass-Signal bei Phasenmodulation]].
+
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
+
 
*Zur Berechnung des Modulationsindex können Sie folgende Eigenschaft der Besselfunktion ausnutzen:
+
 
 +
 
 +
 
 +
''Hints:''  
 +
*This exercise belongs to the chapter  [[Modulation_Methods/Phase_Modulation_(PM)|Phase Modulation]].
 +
*Particular reference is made to the page  [[Modulation_Methods/Phase_Modulation_(PM)#Equivalent_low-pass_signal_in_phase_modulation|Equivalent low-pass signal in phase modulation]].
 +
 +
*For the calculation of the modulation index, you can take advantage of the following property of the Bessel function:
 
:$${\rm J}_n (\eta) = \frac{2 \cdot (n-1)}{\eta} \cdot {\rm J}_{n-1} (\eta) - {\rm J}_{n-2} (\eta) \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm J}_{2} (\eta)= {2}/{\eta} \cdot {\rm J}_{1} (\eta) - {\rm J}_{0} (\eta) \hspace{0.05cm}.$$
 
:$${\rm J}_n (\eta) = \frac{2 \cdot (n-1)}{\eta} \cdot {\rm J}_{n-1} (\eta) - {\rm J}_{n-2} (\eta) \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm J}_{2} (\eta)= {2}/{\eta} \cdot {\rm J}_{1} (\eta) - {\rm J}_{0} (\eta) \hspace{0.05cm}.$$
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie groß sind die Frequenzen $f_T$ und $f_N$?
+
{What are the frequencies &nbsp;$f_{\rm T}$&nbsp; and &nbsp;$f_{\rm N}$?
 
|type="{}"}
 
|type="{}"}
 
$f_{\rm T} \ = \ $  { 40 3% } $\ \rm kHz$  
 
$f_{\rm T} \ = \ $  { 40 3% } $\ \rm kHz$  
 
$f_{\rm N} \ = \ $ { 3 3% } $\ \rm kHz$
 
$f_{\rm N} \ = \ $ { 3 3% } $\ \rm kHz$
  
{Berechnen Sie den Betrag und die Phase von $S_{\rm TP}(f = 3 \ \rm kHz)$.
+
{Calculate the magnitude and the phase of &nbsp;$S_{\rm TP}(f = 3 \ \rm kHz)$.
 
|type="{}"}
 
|type="{}"}
 
$|S_{\rm TP}(f = 3 \ \rm kHz)| \ = \ $  { 0.558 3% }
 
$|S_{\rm TP}(f = 3 \ \rm kHz)| \ = \ $  { 0.558 3% }
$arc \ S_{\rm TP}(f = 3\ \rm  kHz) \ = \ $ { 60 3% } $\ \rm Grad$  
+
${\rm arc} \ S_{\rm TP}(f = 3\ \rm  kHz) \ = \ $ { 60 3% } $\ \rm Grad$  
  
{Berechnen Sie den Betrag und die Phase von $S_{\rm TP}(f = 6 \ \rm kHz)$.
+
{Calculate the magnitude and the phase of &nbsp;$S_{\rm TP}(f = 6 \ \rm kHz)$.
 
|type="{}"}
 
|type="{}"}
 
$|S_{\rm TP}(f = 6 \ \rm kHz)| \ = \ $ { 0.232 3% }  
 
$|S_{\rm TP}(f = 6 \ \rm kHz)| \ = \ $ { 0.232 3% }  
$arc \ S_{\rm TP}(f = 6\ \rm  kHz) \ = \ $ { 120 3% } $\ \rm Grad$
+
${\rm arc} \ S_{\rm TP}(f = 6\ \rm  kHz) \ = \ $ { 120 3% } $\ \rm Grad$
  
{Wie groß ist die Phase des Quellensignals $q(t)$?  
+
{What is the phase of the source signal &nbsp;$q(t)$?  
 
|type="{}"}
 
|type="{}"}
 
$ϕ_{\rm N} \ = \ $ { -30.9--29.1 } $\ \rm Grad$
 
$ϕ_{\rm N} \ = \ $ { -30.9--29.1 } $\ \rm Grad$
  
{Wie groß ist der Modulationsindex $η$?
+
{What is the magnitude of the modulation index &nbsp;$η$&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
$η \ = \ $ { 1.5 3% }  
 
$η \ = \ $ { 1.5 3% }  
Line 53: Line 60:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.''' Bezüglich $|S_+(f)|$ gibt es eine Symmetrie zur Trägerfrequenz $f_T = 40 kHz$. Der Abstand zwischen den Spektrallinien beträgt $f_N = 3 kHz$.
+
'''(1)'''&nbsp; Regarding &nbsp; $|S_+(f)|$&nbsp; there is a symmetry with respect to the carrier frequency&nbsp; $f_{\rm T}\hspace{0.15cm}\underline { = 40 \ \rm kHz}$.&nbsp;  The distance between the spectral lines is&nbsp; $f_{\rm N}\hspace{0.15cm}\underline { = 3 \ \rm kHz}$.
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; Considering&nbsp; $S_{\rm TP}(f = 3{\ \rm kHz}) = S_+(f = 43 \ \rm kHz)$&nbsp;, it holds that:
 +
:$$|S_{\rm TP}(f = 3\,{\rm kHz})| = \sqrt{0.279^2 + 0.483^2} \hspace{0.15cm}\underline {= 0.558}\hspace{0.05cm},$$
 +
:$$ {\rm arc}\hspace{0.15cm} S_{\rm TP}(f = 3\,{\rm kHz}) = \arctan \frac{0.483}{0.279} = \arctan 1.732\hspace{0.15cm}\underline { = 60^\circ} \hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; Analogously to in question&nbsp; '''(2)'''&nbsp;, at frequency &nbsp; $f = 6 \ \rm kHz$ we obtain:
 +
:$$|S_{\rm TP}(f = 6\,{\rm kHz})| = \sqrt{(-0.116)^2 + 0.201^2} \hspace{0.15cm}\underline {= 0.232}\hspace{0.05cm},$$
 +
:$${\rm arc}\hspace{0.15cm} S_{\rm TP}(f = 6\,{\rm kHz}) = \arctan \frac{-0.116}{0.201} = 180^\circ - \arctan 1.732 \hspace{0.15cm}\underline {= 120^\circ} \hspace{0.05cm}.$$
 +
 
 +
 
  
'''2.''' Unter Berücksichtigung von $S_{TP}(f = 3 kHz) = S_+(f = 43 kHz)$ gilt:
+
'''(4)'''&nbsp; When &nbsp; $n = 1$ &nbsp; &rArr; &nbsp; $f = 3 \ \rm kHz$&nbsp; as in question &nbsp; '''(2)''', the phase is:
$$|S_{\rm TP}(f = 3\,{\rm kHz})| = \sqrt{0.279^2 + 0.483^2} \hspace{0.15cm}\underline {= 0.558}\hspace{0.05cm},$$
+
:$$ \phi_{\rm N} + 90^\circ = 60^\circ \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\phi_{\rm N} = -30^\circ\hspace{0.05cm}.$$
$$ {\rm arc}\hspace{0.15cm} S_{\rm TP}(f = 3\,{\rm kHz}) = \arctan \frac{0.483}{0.279} = \arctan 1.732\hspace{0.15cm}\underline { = 60^\circ} \hspace{0.05cm}.$$
+
*Checking this result when &nbsp; $n = 2$ &nbsp; &rArr; &nbsp; $f = 6 \ \rm kHz$&nbsp; as in question&nbsp; '''(3)'''&nbsp; yields the same value:
 +
:$$ 2\cdot (\phi_{\rm N} + 90^\circ) = 120^\circ \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\phi_{\rm N} \hspace{0.15cm}\underline {= -30^\circ}\hspace{0.05cm}.$$
  
'''3.''' n analoger Weise zur Teilaufgabe b) erhält man für $6 kHz$:
 
$$|S_{\rm TP}(f = 6\,{\rm kHz})| = \sqrt{(-0.116)^2 + 0.201^2} \hspace{0.15cm}\underline {= 0.232}\hspace{0.05cm},$$
 
$${\rm arc}\hspace{0.15cm} S_{\rm TP}(f = 6\,{\rm kHz}) = \arctan \frac{-0.116}{0.201} = 180^\circ - \arctan 1.732 \hspace{0.15cm}\underline {= 120^\circ} \hspace{0.05cm}.$$
 
  
'''4.''' Die Phase lautet für $n = 1$ (siehe Teilaufgabe b):
 
$$ \phi_{\rm N} + 90^\circ = 60^\circ \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\phi_{\rm N} = -30^\circ\hspace{0.05cm}.$$
 
Die Überprüfung dieses Ergebnisses mit $n = 2$ liefert den gleichen Wert:
 
$$ 2\cdot (\phi_{\rm N} + 90^\circ) = 120^\circ \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\phi_{\rm N} \hspace{0.15cm}\underline {= -30^\circ}\hspace{0.05cm}.$$
 
  
'''5.''' Die angegebene Gleichung kann wie folgt umgeformt werden:
+
'''(5)'''&nbsp; The given equation can be rewritten as follows:
$$\eta = \frac{2 \cdot {\rm J}_{1}{(\eta)}}{{\rm J}_{0}(\eta) + {\rm J}_{2}(\eta)} \hspace{0.05cm}.$$
+
:$$\eta = \frac{2 \cdot {\rm J}_{1}{(\eta)}}{{\rm J}_{0}(\eta) + {\rm J}_{2}(\eta)} \hspace{0.05cm}.$$
Mit $J_0(η) = 0.512$, $J_1(η) = 0.558$ und $J_2(η) = 0.232$ erhält man somit:
+
*With&nbsp; ${\rm J}_0(η) = 0.512$,&nbsp; ${\rm J}_1(η) = 0.558$&nbsp; and&nbsp; ${\rm J}_2(η) = 0.232$&nbsp; we thus get:
$$ \eta = \frac{2 \cdot 0.558}{0.512 + 0.232}\hspace{0.15cm}\underline { = 1.5}\hspace{0.05cm}.$$
+
:$$ \eta = \frac{2 \cdot 0.558}{0.512 + 0.232}\hspace{0.15cm}\underline { = 1.5}\hspace{0.05cm}.$$
  
  
Line 80: Line 95:
  
  
[[Category:Aufgaben zu Modulationsverfahren|^3.1 Phasenmodulation (PM)^]]
+
[[Category:Modulation Methods: Exercises|^3.1 Phase Modulation^]]

Latest revision as of 16:03, 9 April 2022

Spectrum of the analytical signal

Let us consider the phase modulation of the harmonic oscillation

$$q(t) = A_{\rm N} \cdot \cos(2 \pi \cdot f_{\rm N} \cdot t + \phi_{\rm N}) \hspace{0.05cm},$$

which, given a normalized carrier amplitude  $(A_{\rm T} = 1)$ , leads to the following transmitted signal:

$$ s(t) = \cos \hspace{-0.1cm}\big[\omega_{\rm T} \cdot t + K_{\rm PM} \cdot q(t) \big]\hspace{0.05cm}.$$

The spectrum of the corresponding analytical signal $s_{\rm TP}(t)$  is generally:

$$S_{\rm TP}(f) = \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}n\hspace{0.05cm}\cdot \hspace{0.05cm}(\phi_{\rm N}\hspace{0.05cm}+\hspace{0.05cm} 90^\circ) }\cdot \hspace{0.05cm} \delta (f - n \cdot f_{\rm N})\hspace{0.05cm}$$

Here,  $η = K_{\rm PM} · A_{\rm N}$  is called the modulation index.

In the graph, the real and imaginary parts of the spectrum  $S_+(f)$  of the analytical signal  $s_+(t)$ are shown separately. This should be used to determine the characteristics  $f_{\rm T}$,  $f_{\rm N}$,  $ϕ_{\rm N}$  and  $η$ .





Hints:

  • For the calculation of the modulation index, you can take advantage of the following property of the Bessel function:
$${\rm J}_n (\eta) = \frac{2 \cdot (n-1)}{\eta} \cdot {\rm J}_{n-1} (\eta) - {\rm J}_{n-2} (\eta) \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm J}_{2} (\eta)= {2}/{\eta} \cdot {\rm J}_{1} (\eta) - {\rm J}_{0} (\eta) \hspace{0.05cm}.$$


Questions

1

What are the frequencies  $f_{\rm T}$  and  $f_{\rm N}$?

$f_{\rm T} \ = \ $

$\ \rm kHz$
$f_{\rm N} \ = \ $

$\ \rm kHz$

2

Calculate the magnitude and the phase of  $S_{\rm TP}(f = 3 \ \rm kHz)$.

$|S_{\rm TP}(f = 3 \ \rm kHz)| \ = \ $

${\rm arc} \ S_{\rm TP}(f = 3\ \rm kHz) \ = \ $

$\ \rm Grad$

3

Calculate the magnitude and the phase of  $S_{\rm TP}(f = 6 \ \rm kHz)$.

$|S_{\rm TP}(f = 6 \ \rm kHz)| \ = \ $

${\rm arc} \ S_{\rm TP}(f = 6\ \rm kHz) \ = \ $

$\ \rm Grad$

4

What is the phase of the source signal  $q(t)$?

$ϕ_{\rm N} \ = \ $

$\ \rm Grad$

5

What is the magnitude of the modulation index  $η$ ?

$η \ = \ $


Solution

(1)  Regarding   $|S_+(f)|$  there is a symmetry with respect to the carrier frequency  $f_{\rm T}\hspace{0.15cm}\underline { = 40 \ \rm kHz}$.  The distance between the spectral lines is  $f_{\rm N}\hspace{0.15cm}\underline { = 3 \ \rm kHz}$.


(2)  Considering  $S_{\rm TP}(f = 3{\ \rm kHz}) = S_+(f = 43 \ \rm kHz)$ , it holds that:

$$|S_{\rm TP}(f = 3\,{\rm kHz})| = \sqrt{0.279^2 + 0.483^2} \hspace{0.15cm}\underline {= 0.558}\hspace{0.05cm},$$
$$ {\rm arc}\hspace{0.15cm} S_{\rm TP}(f = 3\,{\rm kHz}) = \arctan \frac{0.483}{0.279} = \arctan 1.732\hspace{0.15cm}\underline { = 60^\circ} \hspace{0.05cm}.$$


(3)  Analogously to in question  (2) , at frequency   $f = 6 \ \rm kHz$ we obtain:

$$|S_{\rm TP}(f = 6\,{\rm kHz})| = \sqrt{(-0.116)^2 + 0.201^2} \hspace{0.15cm}\underline {= 0.232}\hspace{0.05cm},$$
$${\rm arc}\hspace{0.15cm} S_{\rm TP}(f = 6\,{\rm kHz}) = \arctan \frac{-0.116}{0.201} = 180^\circ - \arctan 1.732 \hspace{0.15cm}\underline {= 120^\circ} \hspace{0.05cm}.$$


(4)  When   $n = 1$   ⇒   $f = 3 \ \rm kHz$  as in question   (2), the phase is:

$$ \phi_{\rm N} + 90^\circ = 60^\circ \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\phi_{\rm N} = -30^\circ\hspace{0.05cm}.$$
  • Checking this result when   $n = 2$   ⇒   $f = 6 \ \rm kHz$  as in question  (3)  yields the same value:
$$ 2\cdot (\phi_{\rm N} + 90^\circ) = 120^\circ \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\phi_{\rm N} \hspace{0.15cm}\underline {= -30^\circ}\hspace{0.05cm}.$$


(5)  The given equation can be rewritten as follows:

$$\eta = \frac{2 \cdot {\rm J}_{1}{(\eta)}}{{\rm J}_{0}(\eta) + {\rm J}_{2}(\eta)} \hspace{0.05cm}.$$
  • With  ${\rm J}_0(η) = 0.512$,  ${\rm J}_1(η) = 0.558$  and  ${\rm J}_2(η) = 0.232$  we thus get:
$$ \eta = \frac{2 \cdot 0.558}{0.512 + 0.232}\hspace{0.15cm}\underline { = 1.5}\hspace{0.05cm}.$$