Difference between revisions of "Aufgaben:Exercise 4.5: Non-Linear Quantization"

From LNTwww
 
(2 intermediate revisions by the same user not shown)
Line 4: Line 4:
  
 
[[File:EN_Mod_Z_4_5.png|right|frame|PCM system with companding]]
 
[[File:EN_Mod_Z_4_5.png|right|frame|PCM system with companding]]
To investigate  ''nonlinear quantization''  we start from the outlined system model.
+
To investigate  "non-linear quantization"  we start from the outlined system model.
 
*We disregard the influence of the channel and the PCM coding or decoding.  
 
*We disregard the influence of the channel and the PCM coding or decoding.  
*Thus,  $v_{\rm Q}(ν \cdot T_{\rm A}) = q_{\rm Q}(ν \cdot T_{\rm A})$ always applies, whereby the time specification  $ν \cdot T_{\rm A}$  is omitted in the following.
+
*Thus,  $v_{\rm Q}(ν \cdot T_{\rm A}) = q_{\rm Q}(ν \cdot T_{\rm A})$  always applies,  whereby the time specification  $ν \cdot T_{\rm A}$  is omitted in the following.
  
By comparing one output variable with one input variable at a time, it is possible to determine the influence
+
 
 +
By comparing one output variable with one input variable at the same  time,  it is possible to determine the influence
 
* of the compressor   ⇒    $q_{\rm K}(q_{\rm A})$,
 
* of the compressor   ⇒    $q_{\rm K}(q_{\rm A})$,
 
* of the linear quantizer   ⇒    $q_{\rm Q}(q_{\rm K})$,
 
* of the linear quantizer   ⇒    $q_{\rm Q}(q_{\rm K})$,
* of the nonlinear quantizer   ⇒    $q_{\rm Q}(q_{\rm A})$,
+
* of the non-linear quantizer   ⇒    $q_{\rm Q}(q_{\rm A})$,
* of the expander   ⇒    $v_{\rm E}(v_{\rm Q})$, and
+
* of the expander   ⇒    $v_{\rm E}(v_{\rm Q})$,  and
* of the overall system   ⇒    $v_{\rm E}(q_{\rm A})$
+
* of the overall system   ⇒    $v_{\rm E}(q_{\rm A})$.
  
  
  The following assumptions are made:
+
The following assumptions are made:
  
* All samples  $q_{\rm A}$  are in the range of values  $±1$  .
+
* All samples  $q_{\rm A}$  are in the value range  $±1$  .
* The (linear) quantizer works with  $M = 256$  quantization levels, which are marked with  $μ = 0$  to  $μ = 255$ .
+
* The  (linear)  quantizer works with  $M = 256$  quantization levels,  which are marked with  $μ = 0$  to  $μ = 255$ .
* For compression, the so-called 13-segment characteristic is used.
+
* For compression,  the so-called  "13-segment"  characteristic is used.
  
  
 
This means:
 
This means:
 
*In the range  $|q_{\rm A}| ≤ 1/64$  holds  $q_{\rm K} = q_{\rm A}$.  
 
*In the range  $|q_{\rm A}| ≤ 1/64$  holds  $q_{\rm K} = q_{\rm A}$.  
*For  $q_{\rm A} > 1/64$ ,  $k = 1$, ... , $6$  the following six additional ranges of the compressor characteristic:
+
*For &nbsp;$q_{\rm A} > 1/64$,&nbsp; there are the following six additional ranges &nbsp;$(k = 1$, ... , $6)$&nbsp; of the compressor characteristic:&nbsp; <br>&nbsp; &rArr; &nbsp; range $k\hspace{0.3cm}{\rm (if}\hspace{0.3cm} 2^{k-7}< q_{\rm A} \le 2^{k-6}) \hspace{0.05cm}$ &nbsp; &rArr; &nbsp; $q_{\rm K}(q_{\rm A}) = 2^{4-k} \cdot q_{\rm A} + {k}/{8}.$
:$$q_{\rm K}(q_{\rm A}) = 2^{4-k} \cdot q_{\rm A} + {k}/{8}\hspace{0.9cm} {\rm im\,\,range}\hspace{0.9cm}2^{k-7}< q_{\rm A} \le 2^{k-6} \hspace{0.05cm}.$$
+
*Another six domains exist for negative &nbsp;$q_{\rm A}$&nbsp; values with &nbsp;$k = -1$, ... , $-6$,&nbsp; which are point-symmetric with respect to the origin.&nbsp; <br>However,&nbsp; these are not considered further in this exercise.
*Another six domains exist for the negative &nbsp;$q_{\rm A}$ values with &nbsp;$k = -1$, ... , $-6$, which are point-symmetric with respect to the origin.  
 
*However, these are not considered further in this exercise.
 
 
 
 
 
 
 
 
 
  
  
Line 39: Line 34:
  
 
Hints:  
 
Hints:  
*The task belongs to the chapter&nbsp; [[Modulation_Methods/Pulse_Code_Modulation|Pulse code modulation]].
+
*The exercise belongs to the chapter&nbsp; [[Modulation_Methods/Pulse_Code_Modulation|"Pulse Code Modulation]].
*Reference is made in particular to the page&nbsp; [[Modulation_Methods/Pulse_Code_Modulation#Compression_and_expansion|Compression and Expansion]].
+
*Reference is made in particular to the section&nbsp; [[Modulation_Methods/Pulse_Code_Modulation#Compression_and_expansion|"Compression and Expansion"]].
 
   
 
   
  
Line 47: Line 42:
  
 
<quiz display=simple>
 
<quiz display=simple>
{If &nbsp;$q_{\rm A} = 0.4$.&nbsp; What is the output value &nbsp;$q_{\rm K}$&nbsp; of the compressor?
+
{If &nbsp;$q_{\rm A} = 0.4$: &nbsp; What is the output value &nbsp;$q_{\rm K}$&nbsp; of the compressor?
 
|type="{}"}
 
|type="{}"}
 
$q_{\rm K} \ = \ $ { 0.825 3% }  
 
$q_{\rm K} \ = \ $ { 0.825 3% }  
  
  
{ To which quantization interval &nbsp;$μ$&nbsp; does &nbsp;$q_{\rm A} = 0.4$ belong?
+
{ To which quantization interval &nbsp;$μ$&nbsp; does &nbsp;$q_{\rm A} = 0.4$&nbsp; belong?
 
|type="{}"}
 
|type="{}"}
 
$\mu \ = \ $ { 233 }
 
$\mu \ = \ $ { 233 }
  
{which quantization value &nbsp;$q_{\rm Q}$&nbsp; belongs to &nbsp;$q_{\rm A} = 0.4$?
+
{Which quantization value &nbsp;$q_{\rm Q}$&nbsp; belongs to &nbsp;$q_{\rm A} = 0.4$?
 
|type="{}"}
 
|type="{}"}
 
$q_{\rm Q} \ = \ $ { 0.824 3% }  
 
$q_{\rm Q} \ = \ $ { 0.824 3% }  
  
{In contrast, what quantization value &nbsp;$q_{\rm Q}$&nbsp; belongs to &nbsp;$q_{\rm A} = 0.04$?
+
{In contrast,&nbsp; what quantization value &nbsp;$q_{\rm Q}$&nbsp; belongs to &nbsp;$q_{\rm A} = 0.04$?
 
|type="{}"}
 
|type="{}"}
 
$q_{\rm Q} \ = \ $ { 0.41 3% }  
 
$q_{\rm Q} \ = \ $ { 0.41 3% }  
  
{at the receiver, the input value is &nbsp;$v_{\rm Q} = 211/256 ≈ 0.824$&nbsp; What value &nbsp;$v_{\rm E}$&nbsp; does the expander provide?
+
{At the receiver,&nbsp; the input value is &nbsp;$v_{\rm Q} = 211/256 ≈ 0.824$.&nbsp; What value &nbsp;$v_{\rm E}$&nbsp; does the expander provide?
 
|type="{}"}
 
|type="{}"}
 
$v_{\rm E} \ = \ $ { 0.398 3% }  
 
$v_{\rm E} \ = \ $ { 0.398 3% }  
  
{What are the properties of the characteristic &nbsp;$q_{\rm Q}(q_{\rm A})$&nbsp;?
+
{What are the properties of the&nbsp;  "non-linear quantizer characteristic" &nbsp;$q_{\rm Q}(q_{\rm A})$&nbsp;?
 
|type="[]"}
 
|type="[]"}
 
+ The characteristic &nbsp;$q_{\rm Q}(q_{\rm A})$&nbsp; approximates the compressor characteristic in steps.
 
+ The characteristic &nbsp;$q_{\rm Q}(q_{\rm A})$&nbsp; approximates the compressor characteristic in steps.
Line 75: Line 70:
 
+ The step height is equal in all segments&nbsp; $($except for&nbsp; $k = 0)$&nbsp;.
 
+ The step height is equal in all segments&nbsp; $($except for&nbsp; $k = 0)$&nbsp;.
  
{What are the properties of the characteristic &nbsp;$v_{\rm E}(q_{\rm A})$&nbsp;?
+
{What are the properties of the&nbsp; "overall system characteristic" &nbsp;$v_{\rm E}(q_{\rm A})$&nbsp;?
 
|type="[]"}
 
|type="[]"}
 
- The characteristic &nbsp;$v_{\rm E}(q_{\rm A})$&nbsp; approximates the compressor characteristic in steps.
 
- The characteristic &nbsp;$v_{\rm E}(q_{\rm A})$&nbsp; approximates the compressor characteristic in steps.
Line 85: Line 80:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; The sample&nbsp; $q_{\rm A} = 0.4$&nbsp; belongs to the segment&nbsp; $k = 5$ covering the range&nbsp; $1/4 < q_{\rm A} ≤ 1/2$&nbsp; From the given equation it follows that with&nbsp; $k = 5$:
+
'''(1)'''&nbsp; The sample&nbsp; $q_{\rm A} = 0.4$&nbsp; belongs to the segment&nbsp; $k = 5$&nbsp; covering the range&nbsp; $1/4 < q_{\rm A} ≤ 1/2$.&nbsp; From the given equation it follows that with&nbsp; $k = 5$:
 
:$$q_{\rm K}(q_{\rm A}) = 2^{4-k} \cdot q_{\rm A} + {k}/{8}={1}/{2}\cdot 0.4 + {5}/{8} \hspace{0.15cm}\underline {= 0.825}\hspace{0.05cm}.$$
 
:$$q_{\rm K}(q_{\rm A}) = 2^{4-k} \cdot q_{\rm A} + {k}/{8}={1}/{2}\cdot 0.4 + {5}/{8} \hspace{0.15cm}\underline {= 0.825}\hspace{0.05cm}.$$
  
  
  
'''(2)'''&nbsp; The input value of the linear quantizer is now&nbsp; $q_{\rm K} = 0.825$, so the following calculation applies:
+
'''(2)'''&nbsp; The input value of the linear quantizer is now&nbsp; $q_{\rm K} = 0.825$,&nbsp; so the following calculation applies:
 
:$${105}/{128} < q_{\rm K} = 0.825 \le {106}/{128}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} m = 105 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \mu = 128 + 105\hspace{0.15cm}\underline { = 233} \hspace{0.05cm}.$$
 
:$${105}/{128} < q_{\rm K} = 0.825 \le {106}/{128}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} m = 105 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \mu = 128 + 105\hspace{0.15cm}\underline { = 233} \hspace{0.05cm}.$$
  
Line 96: Line 91:
  
 
'''(3)'''&nbsp; According to the specification page, the quantization interval&nbsp; $μ = 128 + m$&nbsp; is given by the value&nbsp;
 
'''(3)'''&nbsp; According to the specification page, the quantization interval&nbsp; $μ = 128 + m$&nbsp; is given by the value&nbsp;
$q_{\rm Q} = 1/256 + m/128$&nbsp; represented.&nbsp; With&nbsp; $m = 105$&nbsp; it follows:
+
$q_{\rm Q} = 1/256 + m/128$.&nbsp; With&nbsp; $m = 105$&nbsp; it follows:
 
:$$q_{\rm Q} = \frac{1}{256} + \frac{105}{128} \hspace{0.15cm}\underline {\approx 0.824} \hspace{0.05cm}.$$
 
:$$q_{\rm Q} = \frac{1}{256} + \frac{105}{128} \hspace{0.15cm}\underline {\approx 0.824} \hspace{0.05cm}.$$
  
  
  
'''(4)'''&nbsp; According to the sample solution to the subtask&nbsp; '''(3)'''&nbsp; with the input value&nbsp; $q_{\rm A} = 0.04$:
+
'''(4)'''&nbsp; According to the sample solution to subtask&nbsp; '''(3)'''&nbsp; with the input value&nbsp; $q_{\rm A} = 0.04$:
:$$ \frac{1}{32} < q_{\rm A} \frac{1}{16}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} k = 2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} q_{\rm K} = 2^2 \cdot 0.04 + \frac{2}{8}= 0.41$$
+
:$$ \frac{1}{32} < q_{\rm A} \le \frac{1}{16}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} k = 2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} q_{\rm K} = 2^2 \cdot 0.04 + \frac{2}{8}= 0.41$$
 
:$$\Rightarrow \hspace{0.3cm}\frac{52}{128} < q_{\rm K} = 0.41 \le \frac{53}{128}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} m = 52 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \mu = 128 + 52 = 180\hspace{0.3cm}
 
:$$\Rightarrow \hspace{0.3cm}\frac{52}{128} < q_{\rm K} = 0.41 \le \frac{53}{128}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} m = 52 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \mu = 128 + 52 = 180\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm}q_{\rm Q} = \frac{1}{256} + \frac{52}{128} \hspace{0.15cm}\underline {= 0.41} \hspace{0.05cm}.$$
 
\Rightarrow \hspace{0.3cm}q_{\rm Q} = \frac{1}{256} + \frac{52}{128} \hspace{0.15cm}\underline {= 0.41} \hspace{0.05cm}.$$
Line 108: Line 103:
  
  
[[File:Mod_A_4_5_ML_S2a_version2.png|right|frame|characteristics of compressor (blue) and expander (green)]]
+
[[File:Mod_A_4_5_ML_S2a_version2.png|right|frame|Characteristics of compressor (blue) & expander (green)]]
 
'''(5)'''&nbsp; We are looking for the solution in several steps:
 
'''(5)'''&nbsp; We are looking for the solution in several steps:
*In the compressor has&nbsp; $q_{\rm A} = 0.4$&nbsp; led to the initial value&nbsp; $q_{\rm K} = 0.825$&nbsp; and after quantization to the value&nbsp; $q_{\rm Q} = 0. 824$&ndash; see subtasks&nbsp; '''(1)'''&nbsp; and&nbsp; '''(3)'''.&nbsp; Note the red marks in the graph.  
+
*In the compressor: &nbsp; $q_{\rm A} = 0.4$&nbsp; led to the initial value&nbsp; $q_{\rm K} = 0.825$&nbsp; and after quantization to the value&nbsp; $q_{\rm Q} = 0. 824$ &nbsp; &rArr; &nbsp; see subtasks&nbsp; '''(1)'''&nbsp; and&nbsp; '''(3)'''.&nbsp; &rArr; &nbsp; red marks in the graph.  
*The graph shows that, on the receiver side, this results in&nbsp; $v_{\rm Q} = 0.824$&nbsp; approximately back to&nbsp; $v_{\rm E} ≈ 0.4$&nbsp; &rArr; &nbsp; brown marks in the graph.
+
*On the receiver side,&nbsp; this results in&nbsp; $v_{\rm Q} = 0.824$&nbsp; approximately back to&nbsp; $v_{\rm E} ≈ 0.4$ &nbsp; &rArr; &nbsp; brown marks in the graph.
 
+
*However,&nbsp; due to quantization,&nbsp; this is only an approximation.&nbsp; Exactly:
 +
:$$ v_{\rm E} = 0.25 + \frac{0.824-0.750}{0.875-0.750} \cdot 0.25 \hspace{0.15cm}\underline {= 0.398} \hspace{0.05cm}.$$
  
However, due to quantization, this is only an approximation.&nbsp; Exactly:
+
This calculation process can be understood from the graph.&nbsp;  
:$$ v_{\rm E} = 0.25 + \frac{0.824-0.750}{0.875-0.750} \cdot 0.25 \hspace{0.15cm}\underline {= 0.398} \hspace{0.05cm}.$$
 
  
This calculation process can be understood from the graph.&nbsp; Although the expander characteristic&nbsp; $v_E(υ_{\rm Q})$&nbsp; is equal to the inverse function of the compressor characteristic&nbsp; $q_K(q_{\rm A})$&nbsp; an error results because the input $v_{\rm Q}$ of the expander is discrete in value&nbsp; (influence of quantization).
+
:Although the expander characteristic&nbsp; $v_E(υ_{\rm Q})$&nbsp; is equal to the inverse function of the compressor characteristic&nbsp; $q_K(q_{\rm A})$&nbsp; an error results because the input&nbsp; $v_{\rm Q}$&nbsp; of the expander is discrete in value&nbsp; (influence of quantization).
  
  
  
'''(6)'''&nbsp; Correct are <u>statements 1 and 4</u>, as can be verified by the following left graph:
+
'''(6)'''&nbsp; Correct are the&nbsp; <u>statements 1 and 4</u>,&nbsp; as can be verified by the following left graph:
 
[[File:P_ID1622__Mod_A_4_5f.png|right|frame|13-segment characteristic curves: left:&nbsp; $q_{\rm Q}(q_{\rm A})$, &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; right:&nbsp; $v_{\rm E}(q_{\rm A})$]]
 
[[File:P_ID1622__Mod_A_4_5f.png|right|frame|13-segment characteristic curves: left:&nbsp; $q_{\rm Q}(q_{\rm A})$, &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; right:&nbsp; $v_{\rm E}(q_{\rm A})$]]
*The width of each step is different in each segment.  
+
*The width of each step is different in each segment.&nbsp; In the outermost segment&nbsp; $(k = 6)$&nbsp; the step width is&nbsp; $0.5/16 = 1/32$,&nbsp; in the next segment&nbsp; $(k = 5)$&nbsp; only more&nbsp; $0.25/16 = 1/64$.
*In the outermost segment&nbsp; $(k = 6)$&nbsp; the step width is&nbsp; $0.5/16 = 1/32$, in the next segment&nbsp; $(k = 5)$&nbsp; only more&nbsp; $0.25/16 = 1/64$.
 
 
*The step widths in the further segments are&nbsp; $1/128 \ (k = 4)$,&nbsp; $1/256 \ (k = 3)$,&nbsp; $1/512\ (k = 2)$&nbsp; and&nbsp; $1/1024 \ (k = 1)$.  
 
*The step widths in the further segments are&nbsp; $1/128 \ (k = 4)$,&nbsp; $1/256 \ (k = 3)$,&nbsp; $1/512\ (k = 2)$&nbsp; and&nbsp; $1/1024 \ (k = 1)$.  
*The innermost range from&nbsp; $-1/64$&nbsp; to&nbsp; $+1/64$&nbsp; is divided into&nbsp; $64$&nbsp; steps, resulting in the step width&nbsp; $1/2048$&nbsp;.
+
*The innermost range from&nbsp; $-1/64$&nbsp; to&nbsp; $+1/64$&nbsp; is divided into&nbsp; $64$&nbsp; steps,&nbsp; resulting in the step width&nbsp; $1/2048$.
*The step height, on the other hand, is constantly equal&nbsp; $1/8$&nbsp; divided by&nbsp; $16 = 1/128$&nbsp; in the segments&nbsp; $k ≠ 0$&nbsp; and equal&nbsp; $1/256$ in the middle segment.
+
*The step height,&nbsp; on the other hand,&nbsp; is constantly equal&nbsp; $1/8$&nbsp; divided by&nbsp; $16 = 1/128$&nbsp; in the segments&nbsp; $k ≠ 0$&nbsp; and equal&nbsp; $1/256$ in the middle segment.
  
  
  
'''(7)'''&nbsp; Correct here is <u>only the second statement</u>:
+
'''(7)'''&nbsp; Correct here is&nbsp; <u>only the second statement</u>:
*By the expander, the quantization is now along the bisector of the angle.  
+
*By the expander,&nbsp; the quantization is now along the bisector of the angle.  
*In each segment, step width and step height are constant.  
+
*In each segment,&nbsp; step width and step height are constant.  
*As the right graphic shows, however, in the next inner segment the width and the height are only half as large.
+
*As the right graphic shows,&nbsp; however,&nbsp; in the next inner segment the width and the height are only half as large.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Latest revision as of 16:10, 9 April 2022

PCM system with companding

To investigate  "non-linear quantization"  we start from the outlined system model.

  • We disregard the influence of the channel and the PCM coding or decoding.
  • Thus,  $v_{\rm Q}(ν \cdot T_{\rm A}) = q_{\rm Q}(ν \cdot T_{\rm A})$  always applies,  whereby the time specification  $ν \cdot T_{\rm A}$  is omitted in the following.


By comparing one output variable with one input variable at the same time,  it is possible to determine the influence

  • of the compressor   ⇒    $q_{\rm K}(q_{\rm A})$,
  • of the linear quantizer   ⇒    $q_{\rm Q}(q_{\rm K})$,
  • of the non-linear quantizer   ⇒    $q_{\rm Q}(q_{\rm A})$,
  • of the expander   ⇒    $v_{\rm E}(v_{\rm Q})$,  and
  • of the overall system   ⇒    $v_{\rm E}(q_{\rm A})$.


The following assumptions are made:

  • All samples  $q_{\rm A}$  are in the value range  $±1$  .
  • The  (linear)  quantizer works with  $M = 256$  quantization levels,  which are marked with  $μ = 0$  to  $μ = 255$ .
  • For compression,  the so-called  "13-segment"  characteristic is used.


This means:

  • In the range  $|q_{\rm A}| ≤ 1/64$  holds  $q_{\rm K} = q_{\rm A}$.
  • For  $q_{\rm A} > 1/64$,  there are the following six additional ranges  $(k = 1$, ... , $6)$  of the compressor characteristic: 
      ⇒   range $k\hspace{0.3cm}{\rm (if}\hspace{0.3cm} 2^{k-7}< q_{\rm A} \le 2^{k-6}) \hspace{0.05cm}$   ⇒   $q_{\rm K}(q_{\rm A}) = 2^{4-k} \cdot q_{\rm A} + {k}/{8}.$
  • Another six domains exist for negative  $q_{\rm A}$  values with  $k = -1$, ... , $-6$,  which are point-symmetric with respect to the origin. 
    However,  these are not considered further in this exercise.



Hints:


Questions

1

If  $q_{\rm A} = 0.4$:   What is the output value  $q_{\rm K}$  of the compressor?

$q_{\rm K} \ = \ $

2

To which quantization interval  $μ$  does  $q_{\rm A} = 0.4$  belong?

$\mu \ = \ $

3

Which quantization value  $q_{\rm Q}$  belongs to  $q_{\rm A} = 0.4$?

$q_{\rm Q} \ = \ $

4

In contrast,  what quantization value  $q_{\rm Q}$  belongs to  $q_{\rm A} = 0.04$?

$q_{\rm Q} \ = \ $

5

At the receiver,  the input value is  $v_{\rm Q} = 211/256 ≈ 0.824$.  What value  $v_{\rm E}$  does the expander provide?

$v_{\rm E} \ = \ $

6

What are the properties of the  "non-linear quantizer characteristic"  $q_{\rm Q}(q_{\rm A})$ ?

The characteristic  $q_{\rm Q}(q_{\rm A})$  approximates the compressor characteristic in steps.
The characteristic  $q_{\rm Q}(q_{\rm A})$  approximates the angle bisector in steps.
The step width is the same in all segments  $($except for  $k = 0)$ .
The step height is equal in all segments  $($except for  $k = 0)$ .

7

What are the properties of the  "overall system characteristic"  $v_{\rm E}(q_{\rm A})$ ?

The characteristic  $v_{\rm E}(q_{\rm A})$  approximates the compressor characteristic in steps.
The characteristic  $v_{\rm E}(q_{\rm A})$  approximates the angle bisector in steps.
The step width is the same in all segments  $($except for  $k = 0)$ .
The step height is equal in all segments  $($except for  $k = 0)$ .


Solution

(1)  The sample  $q_{\rm A} = 0.4$  belongs to the segment  $k = 5$  covering the range  $1/4 < q_{\rm A} ≤ 1/2$.  From the given equation it follows that with  $k = 5$:

$$q_{\rm K}(q_{\rm A}) = 2^{4-k} \cdot q_{\rm A} + {k}/{8}={1}/{2}\cdot 0.4 + {5}/{8} \hspace{0.15cm}\underline {= 0.825}\hspace{0.05cm}.$$


(2)  The input value of the linear quantizer is now  $q_{\rm K} = 0.825$,  so the following calculation applies:

$${105}/{128} < q_{\rm K} = 0.825 \le {106}/{128}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} m = 105 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \mu = 128 + 105\hspace{0.15cm}\underline { = 233} \hspace{0.05cm}.$$


(3)  According to the specification page, the quantization interval  $μ = 128 + m$  is given by the value  $q_{\rm Q} = 1/256 + m/128$.  With  $m = 105$  it follows:

$$q_{\rm Q} = \frac{1}{256} + \frac{105}{128} \hspace{0.15cm}\underline {\approx 0.824} \hspace{0.05cm}.$$


(4)  According to the sample solution to subtask  (3)  with the input value  $q_{\rm A} = 0.04$:

$$ \frac{1}{32} < q_{\rm A} \le \frac{1}{16}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} k = 2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} q_{\rm K} = 2^2 \cdot 0.04 + \frac{2}{8}= 0.41$$
$$\Rightarrow \hspace{0.3cm}\frac{52}{128} < q_{\rm K} = 0.41 \le \frac{53}{128}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} m = 52 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \mu = 128 + 52 = 180\hspace{0.3cm} \Rightarrow \hspace{0.3cm}q_{\rm Q} = \frac{1}{256} + \frac{52}{128} \hspace{0.15cm}\underline {= 0.41} \hspace{0.05cm}.$$


Characteristics of compressor (blue) & expander (green)

(5)  We are looking for the solution in several steps:

  • In the compressor:   $q_{\rm A} = 0.4$  led to the initial value  $q_{\rm K} = 0.825$  and after quantization to the value  $q_{\rm Q} = 0. 824$   ⇒   see subtasks  (1)  and  (3).  ⇒   red marks in the graph.
  • On the receiver side,  this results in  $v_{\rm Q} = 0.824$  approximately back to  $v_{\rm E} ≈ 0.4$   ⇒   brown marks in the graph.
  • However,  due to quantization,  this is only an approximation.  Exactly:
$$ v_{\rm E} = 0.25 + \frac{0.824-0.750}{0.875-0.750} \cdot 0.25 \hspace{0.15cm}\underline {= 0.398} \hspace{0.05cm}.$$

This calculation process can be understood from the graph. 

Although the expander characteristic  $v_E(υ_{\rm Q})$  is equal to the inverse function of the compressor characteristic  $q_K(q_{\rm A})$  an error results because the input  $v_{\rm Q}$  of the expander is discrete in value  (influence of quantization).


(6)  Correct are the  statements 1 and 4,  as can be verified by the following left graph:

13-segment characteristic curves: left:  $q_{\rm Q}(q_{\rm A})$,           right:  $v_{\rm E}(q_{\rm A})$
  • The width of each step is different in each segment.  In the outermost segment  $(k = 6)$  the step width is  $0.5/16 = 1/32$,  in the next segment  $(k = 5)$  only more  $0.25/16 = 1/64$.
  • The step widths in the further segments are  $1/128 \ (k = 4)$,  $1/256 \ (k = 3)$,  $1/512\ (k = 2)$  and  $1/1024 \ (k = 1)$.
  • The innermost range from  $-1/64$  to  $+1/64$  is divided into  $64$  steps,  resulting in the step width  $1/2048$.
  • The step height,  on the other hand,  is constantly equal  $1/8$  divided by  $16 = 1/128$  in the segments  $k ≠ 0$  and equal  $1/256$ in the middle segment.


(7)  Correct here is  only the second statement:

  • By the expander,  the quantization is now along the bisector of the angle.
  • In each segment,  step width and step height are constant.
  • As the right graphic shows,  however,  in the next inner segment the width and the height are only half as large.