Difference between revisions of "Aufgaben:Exercise 3.5Z: Phase Modulation of a Trapezoidal Signal"

From LNTwww
 
(14 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Frequenzmodulation (FM)
+
{{quiz-Header|Buchseite=Modulation_Methods/Frequency_Modulation_(FM)
 
}}
 
}}
  
[[File:P_ID1100__Mod_Z_3_5.png|right|frame|Trapez– und Rechtecksignal]]
+
[[File:P_ID1100__Mod_Z_3_5.png|right|frame|Trapezoidal and rectangular signals]]
Ein Phasenmodulator mit dem Eingangssignal  $q_1(t)$  und dem modulierten Signal  $s(t)$  am Ausgang wird durch folgende Gleichung beschrieben:
+
A phase modulator with input signal $q_1(t)$  a modulated signal $s(t)$  at the output are described as follows:
 
:$$s(t)  =  A_{\rm T} \cdot \cos \hspace{-0.05cm}\big[\psi(t) \big ]=  
 
:$$s(t)  =  A_{\rm T} \cdot \cos \hspace{-0.05cm}\big[\psi(t) \big ]=  
 
  A_{\rm T} \cdot \cos \hspace{-0.05cm}\big[\omega_{\rm T} \cdot t + K_{\rm PM} \cdot q_1(t) \big ] \hspace{0.05cm}.$$
 
  A_{\rm T} \cdot \cos \hspace{-0.05cm}\big[\omega_{\rm T} \cdot t + K_{\rm PM} \cdot q_1(t) \big ] \hspace{0.05cm}.$$
*Die Trägerkreisfrequenz beträgt  $ω_{\rm T} = 2π · 10^5 \cdot {1}/{\rm s}$.  
+
*The carrier angular frequency is  $ω_{\rm T} = 2π · 10^5 \cdot {1}/{\rm s}$.  
*Die Augenblickskreisfrequenz  $ω_{\rm A}(t)$  ist gleich der Ableitung der Winkelfunktion  $ψ(t)$  nach der Zeit.  
+
*The instantaneous angular frequency  $ω_{\rm A}(t)$  is equal to the derivative of the angle function  $ψ(t)$  with respect to time.  
*Die Augenblicksfrequenz ist dann  $f_{\rm A}(t) = ω_{\rm A}(t)/2π$.
+
*The instantaneous frequency is thus  $f_{\rm A}(t) = ω_{\rm A}(t)/2π$.
  
  
Als Testsignal wird das Trapez–Signal  $q_1(t)$  angelegt, wobei die Nomierungszeitdauer  $T = 10 \ \rm µ s$  beträgt.
+
The trapezoidal signal  $q_1(t)$  is applied as a test signal, where the nominated time duration is  $T = 10 \ \rm µ s$ .
  
Zum gleichen modulierten Signal  $s(t)$  würde ein Frequenzmodulator mit der Winkelfunktion
+
The same modulated signal  $s(t)$  would result from a frequency modulator with the angular function
 
:$$\psi(t) = \omega_{\rm T} \cdot t + K_{\rm FM} \cdot \int q_2(t)\hspace{0.15cm}{\rm d}t$$
 
:$$\psi(t) = \omega_{\rm T} \cdot t + K_{\rm FM} \cdot \int q_2(t)\hspace{0.15cm}{\rm d}t$$
führen, wenn das rechteckförmige Quellensignal  $q_2(t)$  entsprechend der unteren Skizze angelegt wird.
+
if the rectangular source signal  $q_2(t)$  is applied according to the lower plot.
  
  
Line 22: Line 22:
  
  
''Hinweise:''
+
 
*Die Aufgabe gehört zum  Kapitel  [[Modulationsverfahren/Frequenzmodulation_(FM)|Frequenzmodulation]].
+
 
*Bezug genommen wird aber auch auf das Kapitel   [[Modulationsverfahren/Phasenmodulation_(PM)|Phasenmodulation]].
+
 
 +
''Hints:''
 +
*This exercise belongs to the chapter  [[Modulation_Methods/Frequency_Modulation_(FM)|Frequency Modulation]].
 +
*Reference is also made to the chapter   [[Modulation_Methods/Phase_Modulation_(PM)|Phase Modulation]].
 
   
 
   
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie ist die Modulatorkonstante &nbsp;$K_{\rm PM}$&nbsp; zu wählen, damit &nbsp;$ϕ_{\rm max} = 3 \ \rm rad$&nbsp; beträgt?
+
{How should the modulator constant &nbsp;$K_{\rm PM}$&nbsp; be chosen so that &nbsp;$ϕ_{\rm max} = 3 \ \rm rad$&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
$K_{\rm PM} \ = \ $  { 1.5 3% } $\ \rm V^{-1}$  
 
$K_{\rm PM} \ = \ $  { 1.5 3% } $\ \rm V^{-1}$  
  
  
{Welchen Wertebereich nimmt die Augenblicksfrequenz &nbsp;$f_{\rm A}(t)$&nbsp; im Zeitintervall &nbsp;$0 < t < T$&nbsp; an?
+
{What range of values does the instantaneous frequency &nbsp;$f_{\rm A}(t)$&nbsp; take on in the time interval&nbsp;$0 < t < T$&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
$f_\text{A, min} \ = \ $ { 147.7 3% } $\ \rm kHz$  
 
$f_\text{A, min} \ = \ $ { 147.7 3% } $\ \rm kHz$  
 
$f_\text{A, max} \hspace{0.06cm} = \ $ { 147.7 3% } $\ \rm kHz$  
 
$f_\text{A, max} \hspace{0.06cm} = \ $ { 147.7 3% } $\ \rm kHz$  
  
{Welchen Wertebereich nimmt die Augenblicksfrequenz  &nbsp;$f_{\rm A}(t)$&nbsp; im Zeitintervall &nbsp;$T < t < 3T$&nbsp; an?
+
{What range of values does the instantaneous frequency &nbsp;$f_{\rm A}(t)$&nbsp;take on in the time interval &nbsp;$T < t < 3T$&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
$f_\text{A, min} \ = \ $ { 100 3% } $\ \rm kHz$  
 
$f_\text{A, min} \ = \ $ { 100 3% } $\ \rm kHz$  
 
$f_\text{A, max} \hspace{0.06cm} = \ $ { 100 3% } $\ \rm kHz$
 
$f_\text{A, max} \hspace{0.06cm} = \ $ { 100 3% } $\ \rm kHz$
  
{Welchen Wertebereich nimmt die Augenblicksfrequenz  &nbsp;$f_{\rm A}(t)$&nbsp; im Zeitintervall &nbsp;$3T < t < 5T$&nbsp; an?
+
{What range of values does the instantaneous frequency&nbsp;$f_{\rm A}(t)$&nbsp;take on in the time interval &nbsp;$3T < t < 5T$&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
$f_\text{A, min} \ = \ $ { 52.3 3% } $\ \rm kHz$
 
$f_\text{A, min} \ = \ $ { 52.3 3% } $\ \rm kHz$
 
$f_\text{A, max} \hspace{0.06cm} = \ $ { 52.3 3% } $\ \rm kHz$
 
$f_\text{A, max} \hspace{0.06cm} = \ $ { 52.3 3% } $\ \rm kHz$
  
{Wie muss die Modulatorkonstante &nbsp;$K_{\rm FM}$&nbsp; gewählt werden, damit das Signal &nbsp;$q_2(t)$&nbsp; nach Frequenzmodulation zum gleichen HF–Signal &nbsp;$s(t)$&nbsp; führt?
+
{How must the modulator constant &nbsp;$K_{\rm FM}$&nbsp;be chosen so that the signal&nbsp;$q_2(t)$&nbsp; results in the same RF signal&nbsp;$s(t)$&nbsp; after frequency modulation?
 
|type="{}"}
 
|type="{}"}
 
$K_{\rm FM} \ = \ $ { 1.5 3% }  $\ \cdot 10^5 \ \rm V^{-1}s^{-1}$
 
$K_{\rm FM} \ = \ $ { 1.5 3% }  $\ \cdot 10^5 \ \rm V^{-1}s^{-1}$
Line 59: Line 62:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die Phasenfunktion berechnet sich zu $ϕ(t) = K_{\rm PM} · q_1(t)$. Der Phasenhub $ϕ_{\rm max}$ ist gleich der sich ergebenden Phase für den Maximalwert des Quellensignals:
+
'''(1)'''&nbsp; The phase function is calculated as&nbsp; $ϕ(t) = K_{\rm PM} · q_1(t)$.&nbsp; The phase deviation&nbsp; $ϕ_{\rm max}$&nbsp;is equal to the phase resulting from the maximum value of the source signal:
 
:$$ \phi_{\rm max} = K_{\rm PM} \cdot 2\,{\rm V} = 3\,{\rm rad}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} K_{\rm PM} \hspace{0.15cm}\underline {= 1.5\,{\rm V^{-1}}} \hspace{0.05cm}.$$
 
:$$ \phi_{\rm max} = K_{\rm PM} \cdot 2\,{\rm V} = 3\,{\rm rad}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} K_{\rm PM} \hspace{0.15cm}\underline {= 1.5\,{\rm V^{-1}}} \hspace{0.05cm}.$$
  
  
'''(2)'''&nbsp; Im Bereich $0 < t < T$ kann die Winkelfunktion wie folgt dargestellt werden:
+
 
 +
'''(2)'''&nbsp; In the range&nbsp; $0 < t < T$&nbsp;, the angular function can be represented as follows:
 
:$$ \psi(t) = \omega_{\rm T} \cdot t + K_{\rm PM} \cdot 2\,{\rm V} \cdot {t}/{T}\hspace{0.05cm}.$$
 
:$$ \psi(t) = \omega_{\rm T} \cdot t + K_{\rm PM} \cdot 2\,{\rm V} \cdot {t}/{T}\hspace{0.05cm}.$$
*Für die Augenblickskreisfrequenz $ω_{\rm A}(t)$ bzw. die Augenblicksfrequenz $f_{\rm A}(t)$ gilt dann:
+
*For the instantaneous angular frequency &nbsp; $ω_{\rm A}(t)$&nbsp; or the instantaneous frequency &nbsp; $f_{\rm A}(t)$&nbsp;, the following holds:
 
:$$\omega_{\rm A}(t) = \frac{{\rm d}\hspace{0.03cm}\psi(t)}{{\rm d}t}= \omega_{\rm T} + K_{\rm PM} \cdot \frac{2\,{\rm V}}{10\,{\rm &micro; s}}\hspace{0.05cm} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} f_{\rm A}(t) = f_{\rm T} + \frac{1.5\,{\rm  V}^{-1}}{2 \pi} \cdot 2 \cdot 10^5 \rm {V}/{ s} = 100\,{\rm kHz}+ 47.7\,{\rm kHz}= 147.7\,{\rm kHz}\hspace{0.05cm}.$$
 
:$$\omega_{\rm A}(t) = \frac{{\rm d}\hspace{0.03cm}\psi(t)}{{\rm d}t}= \omega_{\rm T} + K_{\rm PM} \cdot \frac{2\,{\rm V}}{10\,{\rm &micro; s}}\hspace{0.05cm} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} f_{\rm A}(t) = f_{\rm T} + \frac{1.5\,{\rm  V}^{-1}}{2 \pi} \cdot 2 \cdot 10^5 \rm {V}/{ s} = 100\,{\rm kHz}+ 47.7\,{\rm kHz}= 147.7\,{\rm kHz}\hspace{0.05cm}.$$
*Die Augenblicksfrequenz ist konstant, so dass $f_\text{A, min} = f_\text{A, max}\hspace{0.15cm}\underline{ = 147.7 \ \rm kHz}$ gilt.
+
*The instantaneous frequency is constant, so $f_\text{A, min} = f_\text{A, max}\hspace{0.15cm}\underline{ = 147.7 \ \rm kHz}$&nbsp; holds.
  
  
'''(3)'''&nbsp; Aufgrund des konstanten Quellensignals ist im gesamten hier betrachteten Zeitbereich $T < t < 3T$ die Ableitung gleich Null, so dass die Augenblicksfrequenz gleich der Trägerfrequenz ist:
+
 
 +
'''(3)'''&nbsp; Due to the constant source signal, the derivative is zero throughout the time interval&nbsp; $T < t < 3T$&nbsp; under consideration, so the instantaneous frequency is equal to the carrier frequency:
 
:$$f_{\rm A, \hspace{0.05cm} min} =f_{\rm A, \hspace{0.05cm} max} =f_{\rm T} \hspace{0.15cm}\underline {= 100\,{\rm kHz}}\hspace{0.05cm}.$$
 
:$$f_{\rm A, \hspace{0.05cm} min} =f_{\rm A, \hspace{0.05cm} max} =f_{\rm T} \hspace{0.15cm}\underline {= 100\,{\rm kHz}}\hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp; Der lineare Abfall von $q_1(t)$ im Zeitintervall $3T < t < 5T$ mit betragsmäßig gleicher Steigung, wie unter Punkt '''(2)''' berechnet, führt zum Ergebnis:
+
 
 +
'''(4)'''&nbsp; The linear decay of&nbsp; $q_1(t)$&nbsp; in the time interval&nbsp; $3T < t < 5T$&nbsp; with slope as calculated in&nbsp; '''(2)'''&nbsp; leads to the result:
 
:$$f_{\rm A, \hspace{0.05cm} min} =f_{\rm A, \hspace{0.05cm} max} =f_{\rm T} - 47.7\,{\rm kHz} \hspace{0.15cm}\underline {= 52.3\,{\rm kHz}}\hspace{0.05cm}.$$
 
:$$f_{\rm A, \hspace{0.05cm} min} =f_{\rm A, \hspace{0.05cm} max} =f_{\rm T} - 47.7\,{\rm kHz} \hspace{0.15cm}\underline {= 52.3\,{\rm kHz}}\hspace{0.05cm}.$$
  
  
'''(5)'''&nbsp; Durch Differentiation kommt man zur Augenblickskreisfrequenz:
+
 
 +
'''(5)'''&nbsp; By differentiation, we arrive at the instantaneous angular frequency:
 
:$$ \omega_{\rm A}(t) = \omega_{\rm T} + K_{\rm FM} \cdot q_2(t) \Rightarrow \hspace{0.3cm} f_{\rm A}(t) = f_{\rm T}+\frac{ K_{\rm FM}}{2 \pi} \cdot q_2(t)\hspace{0.05cm}.$$
 
:$$ \omega_{\rm A}(t) = \omega_{\rm T} + K_{\rm FM} \cdot q_2(t) \Rightarrow \hspace{0.3cm} f_{\rm A}(t) = f_{\rm T}+\frac{ K_{\rm FM}}{2 \pi} \cdot q_2(t)\hspace{0.05cm}.$$
*Mit dem Ergebnis der Teilaufgabe '''(2)''' ergibt sich somit:
+
*Using the result from &nbsp; '''(2)'''&nbsp;, we get:
 
:$$\frac{ K_{\rm FM}}{2 \pi} \cdot 2\,{\rm V} = \frac{ 3 \cdot 10^5}{2 \pi} \cdot {\rm s^{-1}}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} K_{\rm FM} \hspace{0.15cm}\underline {= 1.5 \cdot 10^5 \hspace{0.15cm}{\rm V^{-1}}{\rm s^{-1}}}\hspace{0.05cm}.$$
 
:$$\frac{ K_{\rm FM}}{2 \pi} \cdot 2\,{\rm V} = \frac{ 3 \cdot 10^5}{2 \pi} \cdot {\rm s^{-1}}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} K_{\rm FM} \hspace{0.15cm}\underline {= 1.5 \cdot 10^5 \hspace{0.15cm}{\rm V^{-1}}{\rm s^{-1}}}\hspace{0.05cm}.$$
  
Line 89: Line 96:
  
  
[[Category:Aufgaben zu Modulationsverfahren|^3.2 Frequenzmodulation (FM)^]]
+
[[Category:Modulation Methods: Exercises|^3.2 Frequency Modulation^]]

Latest revision as of 16:11, 9 April 2022

Trapezoidal and rectangular signals

A phase modulator with input signal $q_1(t)$  a modulated signal $s(t)$  at the output are described as follows:

$$s(t) = A_{\rm T} \cdot \cos \hspace{-0.05cm}\big[\psi(t) \big ]= A_{\rm T} \cdot \cos \hspace{-0.05cm}\big[\omega_{\rm T} \cdot t + K_{\rm PM} \cdot q_1(t) \big ] \hspace{0.05cm}.$$
  • The carrier angular frequency is  $ω_{\rm T} = 2π · 10^5 \cdot {1}/{\rm s}$.
  • The instantaneous angular frequency  $ω_{\rm A}(t)$  is equal to the derivative of the angle function  $ψ(t)$  with respect to time.
  • The instantaneous frequency is thus  $f_{\rm A}(t) = ω_{\rm A}(t)/2π$.


The trapezoidal signal  $q_1(t)$  is applied as a test signal, where the nominated time duration is  $T = 10 \ \rm µ s$ .

The same modulated signal  $s(t)$  would result from a frequency modulator with the angular function

$$\psi(t) = \omega_{\rm T} \cdot t + K_{\rm FM} \cdot \int q_2(t)\hspace{0.15cm}{\rm d}t$$

if the rectangular source signal  $q_2(t)$  is applied according to the lower plot.





Hints:


Questions

1

How should the modulator constant  $K_{\rm PM}$  be chosen so that  $ϕ_{\rm max} = 3 \ \rm rad$ ?

$K_{\rm PM} \ = \ $

$\ \rm V^{-1}$

2

What range of values does the instantaneous frequency  $f_{\rm A}(t)$  take on in the time interval $0 < t < T$ ?

$f_\text{A, min} \ = \ $

$\ \rm kHz$
$f_\text{A, max} \hspace{0.06cm} = \ $

$\ \rm kHz$

3

What range of values does the instantaneous frequency  $f_{\rm A}(t)$ take on in the time interval  $T < t < 3T$ ?

$f_\text{A, min} \ = \ $

$\ \rm kHz$
$f_\text{A, max} \hspace{0.06cm} = \ $

$\ \rm kHz$

4

What range of values does the instantaneous frequency $f_{\rm A}(t)$ take on in the time interval  $3T < t < 5T$ ?

$f_\text{A, min} \ = \ $

$\ \rm kHz$
$f_\text{A, max} \hspace{0.06cm} = \ $

$\ \rm kHz$

5

How must the modulator constant  $K_{\rm FM}$ be chosen so that the signal $q_2(t)$  results in the same RF signal $s(t)$  after frequency modulation?

$K_{\rm FM} \ = \ $

$\ \cdot 10^5 \ \rm V^{-1}s^{-1}$


Solution

(1)  The phase function is calculated as  $ϕ(t) = K_{\rm PM} · q_1(t)$.  The phase deviation  $ϕ_{\rm max}$ is equal to the phase resulting from the maximum value of the source signal:

$$ \phi_{\rm max} = K_{\rm PM} \cdot 2\,{\rm V} = 3\,{\rm rad}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} K_{\rm PM} \hspace{0.15cm}\underline {= 1.5\,{\rm V^{-1}}} \hspace{0.05cm}.$$


(2)  In the range  $0 < t < T$ , the angular function can be represented as follows:

$$ \psi(t) = \omega_{\rm T} \cdot t + K_{\rm PM} \cdot 2\,{\rm V} \cdot {t}/{T}\hspace{0.05cm}.$$
  • For the instantaneous angular frequency   $ω_{\rm A}(t)$  or the instantaneous frequency   $f_{\rm A}(t)$ , the following holds:
$$\omega_{\rm A}(t) = \frac{{\rm d}\hspace{0.03cm}\psi(t)}{{\rm d}t}= \omega_{\rm T} + K_{\rm PM} \cdot \frac{2\,{\rm V}}{10\,{\rm µ s}}\hspace{0.05cm} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} f_{\rm A}(t) = f_{\rm T} + \frac{1.5\,{\rm V}^{-1}}{2 \pi} \cdot 2 \cdot 10^5 \rm {V}/{ s} = 100\,{\rm kHz}+ 47.7\,{\rm kHz}= 147.7\,{\rm kHz}\hspace{0.05cm}.$$
  • The instantaneous frequency is constant, so $f_\text{A, min} = f_\text{A, max}\hspace{0.15cm}\underline{ = 147.7 \ \rm kHz}$  holds.


(3)  Due to the constant source signal, the derivative is zero throughout the time interval  $T < t < 3T$  under consideration, so the instantaneous frequency is equal to the carrier frequency:

$$f_{\rm A, \hspace{0.05cm} min} =f_{\rm A, \hspace{0.05cm} max} =f_{\rm T} \hspace{0.15cm}\underline {= 100\,{\rm kHz}}\hspace{0.05cm}.$$


(4)  The linear decay of  $q_1(t)$  in the time interval  $3T < t < 5T$  with slope as calculated in  (2)  leads to the result:

$$f_{\rm A, \hspace{0.05cm} min} =f_{\rm A, \hspace{0.05cm} max} =f_{\rm T} - 47.7\,{\rm kHz} \hspace{0.15cm}\underline {= 52.3\,{\rm kHz}}\hspace{0.05cm}.$$


(5)  By differentiation, we arrive at the instantaneous angular frequency:

$$ \omega_{\rm A}(t) = \omega_{\rm T} + K_{\rm FM} \cdot q_2(t) \Rightarrow \hspace{0.3cm} f_{\rm A}(t) = f_{\rm T}+\frac{ K_{\rm FM}}{2 \pi} \cdot q_2(t)\hspace{0.05cm}.$$
  • Using the result from   (2) , we get:
$$\frac{ K_{\rm FM}}{2 \pi} \cdot 2\,{\rm V} = \frac{ 3 \cdot 10^5}{2 \pi} \cdot {\rm s^{-1}}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} K_{\rm FM} \hspace{0.15cm}\underline {= 1.5 \cdot 10^5 \hspace{0.15cm}{\rm V^{-1}}{\rm s^{-1}}}\hspace{0.05cm}.$$