Difference between revisions of "Aufgaben:Exercise 4.4: About the Quantization Noise"

From LNTwww
 
(4 intermediate revisions by 2 users not shown)
Line 9: Line 9:
  
  
The signal  $q(t)$  is quantized according to the graph with  $M = 6$  stages.  The quantized signal is  $q_{\rm Q}(t)$, where:  
+
The signal  $q(t)$  is quantized according to the graph with  $M = 6$  steps.  The quantized signal is  $q_{\rm Q}(t)$,  where:  
*The linear quantizer is designed for the amplitude range  $±Q_{\rm max}$  such that each quantization interval has width  ${\it Δ} = 2/M - Q_{\rm max}$ .  
+
*The linear quantizer is designed for the amplitude range  $±Q_{\rm max}$  such that each quantization interval has width  ${\it Δ} = 2/M \cdot Q_{\rm max}$.  
*The diagram shows this fact for  $Q_{\rm max} = q_{\rm max} = 6 \ \rm V$.  These numerical values shall be assumed up to and including the subtask  '''(5)''' .
+
*The diagram shows this fact for  $Q_{\rm max} = q_{\rm max} = 6 \ \rm V$.  These numerical values shall be assumed up to and including the subtask  '''(5)'''.
  
  
The so-called  '''quantization noise power'''  is defined as the root mean square of the difference signal  $ε(t) = q_{\rm Q}(t) - q(t)$  . It holds
+
The  "quantization noise power"  is defined as the second moment of the difference signal  $ε(t) = q_{\rm Q}(t) - q(t)$.  It holds:
 
:$$P_{\rm Q} = \frac{1}{T_0' } \cdot \int_{0}^{T_0'}\varepsilon(t)^2 \hspace{0.05cm}{\rm d}t \hspace{0.05cm},$$
 
:$$P_{\rm Q} = \frac{1}{T_0' } \cdot \int_{0}^{T_0'}\varepsilon(t)^2 \hspace{0.05cm}{\rm d}t \hspace{0.05cm},$$
where the time  $T_0'$  is to be chosen appropriately.  
+
where the time  $T_0'$  is to be chosen appropriately.  The  "quantization SNR"  is the ratio    $\rho_{\rm Q} = {P_{\rm S}}/{P_{\rm Q}}\hspace{0.05cm}$,  which is usually given logarithmically  (in dB).
 
 
Quantization SNR is the ratio    $\rho_{\rm Q} = {P_{\rm S}}/{P_{\rm Q}}\hspace{0.05cm},$ which is usually given logarithmically (in dB).
 
  
  
Line 28: Line 26:
  
 
Hints:  
 
Hints:  
*The exercise belongs to the chapter  [[Modulation_Methods/Pulse_Code_Modulation|Pulse Code Modulation]].
+
*The exercise belongs to the chapter  [[Modulation_Methods/Pulse_Code_Modulation|"Pulse Code Modulation"]].
*Reference is made in particular to the page  [[Modulation_Methods/Pulse_Code_Modulation#Quantization_and_quantization_noise|Quantization and quantization Noise]].
+
*Reference is made in particular to the page  [[Modulation_Methods/Pulse_Code_Modulation#Quantization_and_quantization_noise|"Quantization and quantization Noise"]].
 
   
 
   
  
Line 37: Line 35:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Calculate the signal power &nbsp;$P_{\rm S}$&nbsp; (referred to the resistor $1 \ \rm Ω$&nbsp;).
+
{Calculate the signal power &nbsp;$P_{\rm S}$&nbsp; $($referred to the resistor $1 \ \rm Ω)$.
 
|type="{}"}
 
|type="{}"}
 
$P_{\rm S} \ = \ $ { 12 3% } $\ \rm V^2$  
 
$P_{\rm S} \ = \ $ { 12 3% } $\ \rm V^2$  
  
{Which statements are true for the error signal &nbsp;$ε(t)$&nbsp;?
+
{Which statements are true for the error signal &nbsp;$ε(t)= q_{\rm Q}(t)-q(t)$&nbsp;?
 
|type="[]"}
 
|type="[]"}
 
+ $ε(t)$&nbsp; has a sawtooth shape.
 
+ $ε(t)$&nbsp; has a sawtooth shape.
 
- $ε(t)$&nbsp; has a step-like progression.
 
- $ε(t)$&nbsp; has a step-like progression.
+ $ε(t)$&nbsp; is restricted to the range &nbsp;$±{\it Δ}/2 = ±1 \ \rm V$&nbsp;.
+
+ $ε(t)$&nbsp; is restricted to the range &nbsp;$±{\it Δ}/2 = ±1 \ \rm V$.
 
+ $ε(t)$&nbsp; has period &nbsp;$T_0' = T_0/M$.
 
+ $ε(t)$&nbsp; has period &nbsp;$T_0' = T_0/M$.
  
Line 54: Line 52:
 
{Calculate the quantization noise ratio for &nbsp;$M = 6$.
 
{Calculate the quantization noise ratio for &nbsp;$M = 6$.
 
|type="{}"}
 
|type="{}"}
$10 - \lg \ ρ_{\rm Q} \ = \ $ { 15.56 3% } $\ \rm dB$  
+
$10 \cdot \lg \ ρ_{\rm Q} \ = \ $ { 15.56 3% } $\ \rm dB$  
  
 
{What values result from quantization with &nbsp;$N = 8$&nbsp; or &nbsp;$N = 16$ bits?   
 
{What values result from quantization with &nbsp;$N = 8$&nbsp; or &nbsp;$N = 16$ bits?   
Line 61: Line 59:
 
$N = 16\text{:}\hspace{0.15cm}10 ⋅ \lg \ ρ_{\rm Q} \ = \ ${ 96.32 3% } $\ \rm dB$
 
$N = 16\text{:}\hspace{0.15cm}10 ⋅ \lg \ ρ_{\rm Q} \ = \ ${ 96.32 3% } $\ \rm dB$
  
{What conditions must be met for the derived equation to apply to &nbsp;$ρ_{\rm Q}$&nbsp;?
+
{What conditions must be met for the derived equation to apply to &nbsp;$ρ_{\rm Q}$?
 
|type="[]"}
 
|type="[]"}
 
+ All amplitude values are equally probable.
 
+ All amplitude values are equally probable.
Line 72: Line 70:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; The signal power&nbsp; $P_{\rm S} $&nbsp; is equal to the root mean square of&nbsp; $q(t)$ if the reference resistance&nbsp; $1 \rm Ω$&nbsp; is used and therefore the unit&nbsp; $\rm V^2$&nbsp; is accepted for the power.  
+
'''(1)'''&nbsp; The signal power&nbsp; $P_{\rm S} $&nbsp; is equal to the second moment of&nbsp; $q(t)$ if the reference resistance&nbsp; $1 \rm Ω$&nbsp; is used and therefore the unit&nbsp; $\rm V^2$&nbsp; is accepted for the power.  
*Due to periodicity and symmetry, averaging over the time domain&nbsp; $T_0/2$ is sufficient:
+
*Due to periodicity and symmetry,&nbsp; averaging over the time domain&nbsp; $T_0/2$&nbsp; is sufficient:
 
:$$P_{\rm S} = \frac{1}{T_0/2} \cdot \int_{0}^{T_0/2}q^2(t) \hspace{0.05cm}{\rm d}t = \frac{2 \cdot q_{\rm max}^2}{T_0} \cdot \int_{0}^{T_0/2}\left ( { 2 \cdot t}/{T_0} \right )^2 \hspace{0.05cm}{\rm d}t= \frac{2 \cdot q_{\rm max}^2}{T_0} \cdot \frac{T_0}{2} \cdot \int_{0}^{1}x^2 \hspace{0.05cm}{\rm d}x = \frac{q_{\rm max}^2}{3} \hspace{0.05cm}.$$
 
:$$P_{\rm S} = \frac{1}{T_0/2} \cdot \int_{0}^{T_0/2}q^2(t) \hspace{0.05cm}{\rm d}t = \frac{2 \cdot q_{\rm max}^2}{T_0} \cdot \int_{0}^{T_0/2}\left ( { 2 \cdot t}/{T_0} \right )^2 \hspace{0.05cm}{\rm d}t= \frac{2 \cdot q_{\rm max}^2}{T_0} \cdot \frac{T_0}{2} \cdot \int_{0}^{1}x^2 \hspace{0.05cm}{\rm d}x = \frac{q_{\rm max}^2}{3} \hspace{0.05cm}.$$
 
*Here the substitution&nbsp; $x = 2 - t/T_0$&nbsp; was used.&nbsp; With&nbsp; $q_{\rm max} = 6 \ \rm V$&nbsp; one gets&nbsp; $P_\rm S\hspace{0.15cm}\underline { = 12 \ V^2}$.
 
*Here the substitution&nbsp; $x = 2 - t/T_0$&nbsp; was used.&nbsp; With&nbsp; $q_{\rm max} = 6 \ \rm V$&nbsp; one gets&nbsp; $P_\rm S\hspace{0.15cm}\underline { = 12 \ V^2}$.
Line 79: Line 77:
  
  
[[File:P_ID1616__Mod_A_4_4.png|right|frame|error signal for&nbsp; $Q_{\rm max} = q_{\rm max}$]]
+
[[File:Mod_A_4_4b_neu.png|right|frame|Error signal for&nbsp; $Q_{\rm max} = q_{\rm max}$]]
'''(2)'''&nbsp; Correct are <u>suggested solutions 1, 3, and 4</u>:
+
'''(2)'''&nbsp; Correct are&nbsp; <u>suggested solutions 1, 3, and 4</u>:
*We assume here&nbsp; $Q_{\rm max} = q_{\rm max} = 6 \ \rm V$&nbsp; .  
+
*We assume here&nbsp; $Q_{\rm max} = q_{\rm max} = 6 \ \rm V$.  
 
*This gives the sawtooth-shaped error signal&nbsp; $ε(t)$&nbsp; between&nbsp; $±1\ \rm V$.  
 
*This gives the sawtooth-shaped error signal&nbsp; $ε(t)$&nbsp; between&nbsp; $±1\ \rm V$.  
 
*The period duration is&nbsp; $T_0' = T_0/6$.
 
*The period duration is&nbsp; $T_0' = T_0/6$.
Line 88: Line 86:
  
 
'''(3)'''&nbsp; The error signal&nbsp; $ε(t)$&nbsp; proceeds in the same way as&nbsp; $q(t)$&nbsp; sawtooth.  
 
'''(3)'''&nbsp; The error signal&nbsp; $ε(t)$&nbsp; proceeds in the same way as&nbsp; $q(t)$&nbsp; sawtooth.  
*Thus, the same equation as in subtask&nbsp; '''(1)'''' is suitable for calculating the root mean square.  
+
*Thus,&nbsp; the same equation as in subtask&nbsp; '''(1)'''&nbsp; is suitable for calculating the power.  
*Note, however, that the amplitude is smaller by a factor&nbsp; $M$&nbsp; while the different period duration does not matter for the averaging:
+
*Note,&nbsp; however,&nbsp; that the amplitude is smaller by a factor&nbsp; $M$&nbsp; while the different period duration does not matter for the averaging:
 
:$$P_{\rm Q} = \frac{P_{\rm S}}{M^2} = \frac{12\,{\rm V}^2}{36}\hspace{0.15cm}\underline {= 0.333\,{\rm V}^2 }\hspace{0.05cm}.$$
 
:$$P_{\rm Q} = \frac{P_{\rm S}}{M^2} = \frac{12\,{\rm V}^2}{36}\hspace{0.15cm}\underline {= 0.333\,{\rm V}^2 }\hspace{0.05cm}.$$
  
Line 106: Line 104:
  
  
 +
[[File:P_ID1618__Mod_A_4_4f.png|right|frame|Quantization with&nbsp; $Q_{\rm max} \ne q_{\rm max}$]]
 +
'''(6)'''&nbsp; <u>All of the above preconditions</u>&nbsp; must be satisfied:
 +
*For non-linear quantization,&nbsp; the simple relation&nbsp; $ρ_{\rm Q} = M^2$&nbsp; does not hold.
 +
*For an PDF other than the uniform distribution&nbsp; $ρ_{\rm Q} = M^2$&nbsp; is also only an approximation,&nbsp; but this is usually accepted.
 +
*If &nbsp;$Q_{\rm max} < q_{\rm max}$,&nbsp; truncation of the peaks occurs,&nbsp; while with &nbsp;$Q_{\rm max} > q_{\rm max}$&nbsp; the quantization intervals are larger than required.
  
'''(6)'''&nbsp; <u>All of the above preconditions</u> must be satisfied:
 
*For nonlinear quantization, the simple relation&nbsp; $ρ_{\rm Q} = M^2$&nbsp; does not hold.
 
*For an amplitude distribution other than the uniform distribution&nbsp; $ρ_{\rm Q} = M^2$&nbsp; is also only an approximation, but this is usually accepted.
 
*If &nbsp;$Q_{\rm max} < q_{\rm max}$, truncation of the peaks occurs, while with &nbsp;$Q_{\rm max} > q_{\rm max}$&nbsp; the quantization intervals are larger than required.
 
  
 +
The graph shows the error signals &nbsp;$ε(t)$&nbsp;
 +
#for &nbsp;$Q_{\rm max} > q_{\rm max}$&nbsp; (left)
 +
#and &nbsp;$Q_{\rm max} < q_{\rm max}$&nbsp; (right):
  
[[File:P_ID1618__Mod_A_4_4f.png|right|frame|Quantisierung mit&nbsp; $Q_{\rm max} \ne q_{\rm max}$]]
 
<br><br><br><br>
 
The graph shows the error signals &nbsp;$ε(t)$&nbsp; for &nbsp;$Q_{\rm max} > q_{\rm max}$&nbsp; (left) and &nbsp;$Q_{\rm max} < q_{\rm max}$&nbsp; (right).
 
  
+
:In both cases,&nbsp; the quantization noise power is significantly larger than calculated in sub-task&nbsp; '''(3)'''.
In both cases, the quantization noise power is significantly larger than calculated in point&nbsp; '''(3)'''&nbsp;.
 
  
  

Latest revision as of 14:57, 11 April 2022

Quantization error with sawtooth input

To calculate the quantization noise power  $P_{\rm Q}$  we assume a periodic sawtooth-shaped source signal  $q(t)$  with value range  $±q_{\rm max}$  and period duration  $T_0$ .

  • In the mean time domain  $-T_0/2 ≤ t ≤ T_0/2$  holds:   $q(t) = q_{\rm max} \cdot \left ( {2 \cdot t}/{T_0} \right ).$
  • We refer to the power of the signal  $q(t)$  here as the transmit power  $P_{\rm S}$.


The signal  $q(t)$  is quantized according to the graph with  $M = 6$  steps.  The quantized signal is  $q_{\rm Q}(t)$,  where:

  • The linear quantizer is designed for the amplitude range  $±Q_{\rm max}$  such that each quantization interval has width  ${\it Δ} = 2/M \cdot Q_{\rm max}$.
  • The diagram shows this fact for  $Q_{\rm max} = q_{\rm max} = 6 \ \rm V$.  These numerical values shall be assumed up to and including the subtask  (5).


The  "quantization noise power"  is defined as the second moment of the difference signal  $ε(t) = q_{\rm Q}(t) - q(t)$.  It holds:

$$P_{\rm Q} = \frac{1}{T_0' } \cdot \int_{0}^{T_0'}\varepsilon(t)^2 \hspace{0.05cm}{\rm d}t \hspace{0.05cm},$$

where the time  $T_0'$  is to be chosen appropriately.  The  "quantization SNR"  is the ratio    $\rho_{\rm Q} = {P_{\rm S}}/{P_{\rm Q}}\hspace{0.05cm}$,  which is usually given logarithmically  (in dB).





Hints:



Questions

1

Calculate the signal power  $P_{\rm S}$  $($referred to the resistor $1 \ \rm Ω)$.

$P_{\rm S} \ = \ $

$\ \rm V^2$

2

Which statements are true for the error signal  $ε(t)= q_{\rm Q}(t)-q(t)$ ?

$ε(t)$  has a sawtooth shape.
$ε(t)$  has a step-like progression.
$ε(t)$  is restricted to the range  $±{\it Δ}/2 = ±1 \ \rm V$.
$ε(t)$  has period  $T_0' = T_0/M$.

3

What is the quantization noise power  $P_{\rm Q}$  for  $M=6$?

$P_{\rm Q} \ = \ $

$\ \rm V^2$

4

Calculate the quantization noise ratio for  $M = 6$.

$10 \cdot \lg \ ρ_{\rm Q} \ = \ $

$\ \rm dB$

5

What values result from quantization with  $N = 8$  or  $N = 16$ bits?

$N = 8\text{:}\hspace{0.35cm}10 ⋅ \lg \ ρ_{\rm Q} \ = \ $

$\ \rm dB$
$N = 16\text{:}\hspace{0.15cm}10 ⋅ \lg \ ρ_{\rm Q} \ = \ $

$\ \rm dB$

6

What conditions must be met for the derived equation to apply to  $ρ_{\rm Q}$?

All amplitude values are equally probable.
A linear quantizer is present.
The quantizer is exactly matched to the signal  $(Q_{\rm max} = q_{\rm max})$.


Solution

(1)  The signal power  $P_{\rm S} $  is equal to the second moment of  $q(t)$ if the reference resistance  $1 \rm Ω$  is used and therefore the unit  $\rm V^2$  is accepted for the power.

  • Due to periodicity and symmetry,  averaging over the time domain  $T_0/2$  is sufficient:
$$P_{\rm S} = \frac{1}{T_0/2} \cdot \int_{0}^{T_0/2}q^2(t) \hspace{0.05cm}{\rm d}t = \frac{2 \cdot q_{\rm max}^2}{T_0} \cdot \int_{0}^{T_0/2}\left ( { 2 \cdot t}/{T_0} \right )^2 \hspace{0.05cm}{\rm d}t= \frac{2 \cdot q_{\rm max}^2}{T_0} \cdot \frac{T_0}{2} \cdot \int_{0}^{1}x^2 \hspace{0.05cm}{\rm d}x = \frac{q_{\rm max}^2}{3} \hspace{0.05cm}.$$
  • Here the substitution  $x = 2 - t/T_0$  was used.  With  $q_{\rm max} = 6 \ \rm V$  one gets  $P_\rm S\hspace{0.15cm}\underline { = 12 \ V^2}$.


Error signal for  $Q_{\rm max} = q_{\rm max}$

(2)  Correct are  suggested solutions 1, 3, and 4:

  • We assume here  $Q_{\rm max} = q_{\rm max} = 6 \ \rm V$.
  • This gives the sawtooth-shaped error signal  $ε(t)$  between  $±1\ \rm V$.
  • The period duration is  $T_0' = T_0/6$.


(3)  The error signal  $ε(t)$  proceeds in the same way as  $q(t)$  sawtooth.

  • Thus,  the same equation as in subtask  (1)  is suitable for calculating the power.
  • Note,  however,  that the amplitude is smaller by a factor  $M$  while the different period duration does not matter for the averaging:
$$P_{\rm Q} = \frac{P_{\rm S}}{M^2} = \frac{12\,{\rm V}^2}{36}\hspace{0.15cm}\underline {= 0.333\,{\rm V}^2 }\hspace{0.05cm}.$$


(4)  The results of the subtasks  (1)  and  (3)  lead to the quantization SNR:

$$\rho_{\rm Q} = \frac{P_{\rm S}}{P_{\rm Q}} = M^2 = 36 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm Q}\hspace{0.15cm}\underline { =15.56\,{\rm dB}} \hspace{0.05cm}.$$


(5)  With  $M = 2^N$  we obtain in general:

$$ \rho_{\rm Q} = M^2 = 2^{2N} \hspace{0.3cm}\rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm Q} =20 \cdot {\rm lg}\hspace{0.1cm}(2)\cdot N \approx 6.02\,{\rm dB} \cdot N .$$
  • This results in the special cases we are looking for:
$$N = 8:\hspace{0.2cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm Q} \hspace{0.15cm}\underline {= 48.16\,{\rm dB}}\hspace{0.05cm},$$
$$N = 16:\hspace{0.2cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm Q} \hspace{0.15cm}\underline { = 96.32\,{\rm dB}}\hspace{0.05cm}.$$


Quantization with  $Q_{\rm max} \ne q_{\rm max}$

(6)  All of the above preconditions  must be satisfied:

  • For non-linear quantization,  the simple relation  $ρ_{\rm Q} = M^2$  does not hold.
  • For an PDF other than the uniform distribution  $ρ_{\rm Q} = M^2$  is also only an approximation,  but this is usually accepted.
  • If  $Q_{\rm max} < q_{\rm max}$,  truncation of the peaks occurs,  while with  $Q_{\rm max} > q_{\rm max}$  the quantization intervals are larger than required.


The graph shows the error signals  $ε(t)$ 

  1. for  $Q_{\rm max} > q_{\rm max}$  (left)
  2. and  $Q_{\rm max} < q_{\rm max}$  (right):


In both cases,  the quantization noise power is significantly larger than calculated in sub-task  (3).