Difference between revisions of "Aufgaben:Exercise 4.15Z: MSK Basic Pulse and MSK Spectrum"

From LNTwww
 
(22 intermediate revisions by 4 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1744__Mod_Z_4_14.png|right|frame|MSK–Grundimpuls und –Spektrum]]
+
[[File:P_ID1744__Mod_Z_4_14.png|right|frame|MSK basic pulse and its spectrum]]
Der zur Realisierung der [[Modulationsverfahren/Nichtlineare_Modulationsverfahren#Realisierung_der_MSK_als_Offset.E2.80.93QPSK_.281.29|MSK mittels Offset–QPSK]] stets erforderliche Grundimpuls hat die in der Grafik oben dargestellte Form:
+
The fundamental pulse that is always required to  [[Modulation_Methods/Nonlinear_Digital_Modulation#Realizing_MSK_as_Offset.E2.80.93QPSK|realize MSK as Offset–QPSK]]   has the form shown in the graph above:
:$$g_{\rm MSK}(t) = \left\{ \begin{array}{l} g_0 \cdot \cos (\frac{\pi \cdot t}{2 \cdot T}) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{10}c} | t | \le T \hspace{0.05cm}, \\ {\rm sonst}\hspace{0.05cm}. \\ \end{array}$$
+
:$$g_{\rm MSK}(t) = \left\{ \begin{array}{l} g_0 \cdot \cos (\pi/2 \cdot t/T) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{10}c} | t | \le T \hspace{0.05cm}, \\ {\rm otherwise}\hspace{0.05cm}. \\ \end{array}$$
Darunter gezeichnet ist die Spektralfunktion $G(f)$, also die [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_erste_Fourierintegral|Fouriertransformierte]] von $g(t)$. Die dazugehörige Gleichung soll in dieser Aufgabe ermittelt werden, wobei zu berücksichtigen ist:
+
The spectral function  $G(f)$ is drawn below, that is, the  [[Signal_Representation/Fourier_Transform_and_its_Inverse#The_first_Fourier_integral|Fourier transform]]  of  $g(t)$.  
 +
 
 +
The corresponding equation is to be determined in this task, by considering:  
 
:$$g(t) = c(t) \cdot r(t)\hspace{0.05cm}.$$
 
:$$g(t) = c(t) \cdot r(t)\hspace{0.05cm}.$$
Hierbei sind folgende  Abkürzungen verweendet:
+
The following abbreviations are used here:
* $c(t)$ ist eine Cosinusschwingung mit Amplitude $1$ und (noch zu bestimmender) Frequenz $f_0$.
+
* $c(t)$  is a cosine oscillation with amplitude  $1$  and  frequency  $f_0$ (yet to be determined).
* $r(t)$ ist eine Rechteckfunktion mit der Amplitude $g_0$ und der Dauer $2T$.
+
* $r(t)$  is a square wave function with amplitude $g_0$  and duration $2T$.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
  
  
''Hinweise:''  
+
''Hints:''  
*Die Aufgabe gehört zum  Kapitel [[Modulationsverfahren/Nichtlineare_digitale_Modulation|Nichtlineare digitale Modulation]].
+
*This exercise belongs to the chapter  [[Modulation_Methods/Nonlinear_Digital_Modulation|Nonlinear Digital Modulation]].
*Bezug genommen wird insbesondere auf den Abschnitt [[Modulationsverfahren/Nichtlineare_digitale_Modulation#Realisierung_der_MSK_als_Offset.E2.80.93QPSK|Realisierung der MSK als Offset-QPSK]].
+
*Particular reference is made to the page  [[Modulation_Methods/Nonlinear_Digital_Modulation#Realizing_MSK_as_Offset.E2.80.93QPSK|Realizing MSK as Offset–QPSK]].
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
+
*Das hier gewonnene Ergebnis wird auch in der [[Aufgaben:4.15_MSK_im_Vergleich_mit_BPSK_und_QPSK|Aufgabe 4.15]] verwendet.
+
*The result obtained here is also used in  [[Aufgaben:Exercise_4.15:_MSK_Compared_with_BPSK_and_QPSK|Exercise 4.15]] .
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie ist die Frequenz $f_0$ der Cosinusschwingung $c(t)$ zu wählen, damit $g(t) = c(t) · r(t)$ gilt?
+
{How should one choose the frequency&nbsp;$f_0$&nbsp; of the cosine oscillation &nbsp;$c(t)$&nbsp; so that  &nbsp;$g(t) = c(t) · r(t)$&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
$f_0 \ = \ $  { 0.25 3% } $\ \cdot 1/T$
 
$f_0 \ = \ $  { 0.25 3% } $\ \cdot 1/T$
  
{Wie lautet das Spektrum $R(f)$ der Rechteckfunktion $r(t)$? Welcher Spektralwert tritt bei $f = 0$ auf?
+
{What is the spectrum &nbsp;$R(f)$&nbsp; of the rectangular function &nbsp;$r(t)$?&nbsp; What spectral value occurs when&nbsp;$f = 0$&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
$R(f=0) \ = \ $  { 2 3%  } $\ \cdot g_0 \cdot T$  
 
$R(f=0) \ = \ $  { 2 3%  } $\ \cdot g_0 \cdot T$  
  
{Berechnen Sie das Spektrum $G(f)$ des MSK&ndash;Impuses $g(t)$, insbesondere den Spektralwert bei $f = 0$.
+
{Calculate the spectrun &nbsp;$G(f)$&nbsp; of the MSK pulse &nbsp;$g(t)$, particularly the spectral value at &nbsp;$f = 0$.
 
|type="{}"}
 
|type="{}"}
 
$G(f=0) \ = \ $ { 1.273 3% } $\ \cdot g_0 \cdot T$
 
$G(f=0) \ = \ $ { 1.273 3% } $\ \cdot g_0 \cdot T$
  
{Fassen Sie das Ergebnis der Teilaufgabe (3) in einem Term zusammen. Bei welcher Frequenz $f_1$ besitzt $G(f)$ seine erste Nullstelle?
+
{Summarize the result of question &nbsp; '''(3)'''&nbsp; in one term. At what frequency &nbsp;$f_1$&nbsp; does &nbsp;$G(f)$&nbsp; have its first zero?
 
|type="{}"}
 
|type="{}"}
 
$f_1 \ = \ $ { 0.75 3% } $\ \cdot 1/T$
 
$f_1 \ = \ $ { 0.75 3% } $\ \cdot 1/T$
Line 41: Line 49:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die Periodendauer des Cosinussignals muss $T_0 = 4T$ sein. Damit ist die Frequenz $f_0 = 1/T_0\hspace{0.15cm}\underline {= 0.25} · 1/T$.
+
'''(1)'''&nbsp; The period of the cosine signal must be&nbsp; $T_0 = 4T$&nbsp;.&nbsp; Thus, the frequency is $f_0 = 1/T_0\hspace{0.15cm}\underline {= 0.25} · 1/T$.
  
  
'''(2)'''&nbsp; Die Spektralfunktion eines Rechteckimpulses der Höhe $g_0$ und der Dauer 2T lautet:
+
'''(2)'''&nbsp; The spectral function of a rectangular pulse of height&nbsp; $g_0$&nbsp; and duration&nbsp;$ 2T$&nbsp; is:
 
:$$R(f) = g_0 \cdot 2 T \cdot {\rm si} ( \pi f \cdot 2T )\hspace{0.2cm}{\rm mit}\hspace{0.2cm}{\rm si} (x) = \sin(x)/x \hspace{0.3cm}
 
:$$R(f) = g_0 \cdot 2 T \cdot {\rm si} ( \pi f \cdot 2T )\hspace{0.2cm}{\rm mit}\hspace{0.2cm}{\rm si} (x) = \sin(x)/x \hspace{0.3cm}
 
  \Rightarrow \hspace{0.3cm}R(f = 0) \hspace{0.15cm}\underline {= 2} \cdot g_0 \cdot T\hspace{0.05cm}.$$
 
  \Rightarrow \hspace{0.3cm}R(f = 0) \hspace{0.15cm}\underline {= 2} \cdot g_0 \cdot T\hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp; Aus $g(t) = c(t) · r(t)$ folgt nach dem Faltungssatz: &nbsp; $ G(f) = C(f) \star R(f)\hspace{0.05cm}.$ Die Spektralfunktion
+
'''(3)'''&nbsp; When&nbsp; $g(t) = c(t) · r(t)$&nbsp;, it follows from the convolution theorem that: &nbsp; $ G(f) = C(f) \star R(f)\hspace{0.05cm}.$  
$C(f)$ besteht aus zwei Diracfunktionen bei $± f_0$, jeweils mit dem Gewicht $1/2$. Daraus folgt:
+
*The spectral function&nbsp; $C(f)$&nbsp; consists of two  Dirac functions at&nbsp; $± f_0$, each with weight&nbsp; $1/2$.&nbsp; From this follows:
:$$ G(f)  =  2 \cdot g_0 \cdot T \cdot \left [ \frac {1}{2} \cdot \delta (f - f_0 ) + \frac {1}{2} \cdot \delta (f + f_0 )\right ] \star {\rm si} ( 2 \pi f T )=  g_0 \cdot T \cdot \left [ {\rm si} ( 2 \pi T \cdot (f - f_0 ) ) + {\rm si} ( 2 \pi T \cdot (f + f_0 ) ) \right ] \hspace{0.05cm}.$$
+
:$$ G(f)  =  2 \cdot g_0 \cdot T \cdot \big [ 1/2 \cdot \delta (f - f_0 ) + 1/2 \cdot \delta (f + f_0 )\big ] \star {\rm si} ( 2 \pi f T )=  g_0 \cdot T \cdot \big [ {\rm si} ( 2 \pi T \cdot (f - f_0 ) ) + {\rm si} ( 2 \pi T \cdot (f + f_0 ) ) \big ] \hspace{0.05cm}.$$
Mit dem Ergebnis $f_0 = 1/(4T)$ der Teilaufgabe (1) gilt weiter:
+
*Using the result&nbsp; $f_0 = 1/(4T)$&nbsp; from question&nbsp; '''(1)'''&nbsp;, it further holds that:
:$$G(f) = g_0 \cdot T \cdot \left [ {\rm si} ( 2 \pi f T - \pi / 2 ) + {\rm si} ( 2 \pi f T + \pi / 2) \right ]$$
+
:$$G(f) = g_0 \cdot T \cdot \big [ {\rm si} ( 2 \pi f T - \pi / 2 ) + {\rm si} ( 2 \pi f T + \pi / 2) \big ]$$
:$$\Rightarrow \hspace{0.3cm} G(f = 0)  =  g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{-0.02cm}\cdot\hspace{-0.02cm} \left [ {\rm si} ( - \frac{\pi}{2} ) + {\rm si} ( +\frac{\pi}{2} ) \right ] = 2 \cdot g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{-0.02cm}\cdot\hspace{-0.02cm} {\rm si} ( \frac{\pi}{2} ) = 2 \hspace{-0.02cm}\cdot\hspace{-0.02cm} g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{-0.02cm}\cdot\hspace{-0.02cm} \frac {{\rm sin}({\pi}/{2}) } { {\pi}/{2} } ={4}/{\pi} \hspace{-0.02cm}\cdot\hspace{-0.02cm} g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{0.15cm}\underline {\approx 1.273} \hspace{-0.02cm}\cdot\hspace{-0.02cm} g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T .$$
+
:$$\Rightarrow \hspace{0.3cm} G(f = 0)  =  g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{-0.02cm}\cdot\hspace{-0.02cm} \big [ {\rm si} ( - \pi/2 ) + {\rm si} ( +\pi/2 ) \big ] = 2 \cdot g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{-0.02cm}\cdot\hspace{-0.02cm} {\rm si} ( \pi/2 ) = 2 \hspace{-0.02cm}\cdot\hspace{-0.02cm} g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{-0.02cm}\cdot\hspace{-0.02cm} \frac {{\rm sin}({\pi}/{2}) } { {\pi}/{2} } ={4}/{\pi} \hspace{-0.02cm}\cdot\hspace{-0.02cm} g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{0.15cm}\underline {\approx 1.273} \hspace{-0.02cm}\cdot\hspace{-0.02cm} g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T .$$
 +
 
  
'''(4)'''&nbsp; Schreibt man die si–Funktion aus, so erhält man mit $\sin (α ± π/2) = ± \cos(α)$:
+
'''(4)'''&nbsp; By writing out the&nbsp; $\rm si$–function, with &nbsp; $\sin (α ± π/2) = ± \cos(α)$, one gets:
 
:$$G(f)  =  g_0 \cdot T \cdot \left [ \frac{{\rm sin} ( 2 \pi f T - \pi / 2 )}{2 \pi f T - \pi / 2 } + \frac{{\rm sin} ( 2 \pi f T + \pi / 2 )}{2 \pi f T + \pi / 2 } \right ]=  g_0 \cdot T \cdot \frac {2}{\pi}\cdot\left [ \frac{-{\rm cos} ( 2 \pi f T )}{4 f T - 1 } + \frac{{\rm cos} ( 2 \pi f T )}{4 f T + 1 } \right ]$$  
 
:$$G(f)  =  g_0 \cdot T \cdot \left [ \frac{{\rm sin} ( 2 \pi f T - \pi / 2 )}{2 \pi f T - \pi / 2 } + \frac{{\rm sin} ( 2 \pi f T + \pi / 2 )}{2 \pi f T + \pi / 2 } \right ]=  g_0 \cdot T \cdot \frac {2}{\pi}\cdot\left [ \frac{-{\rm cos} ( 2 \pi f T )}{4 f T - 1 } + \frac{{\rm cos} ( 2 \pi f T )}{4 f T + 1 } \right ]$$  
 
:$$\Rightarrow \hspace{0.3cm} G(f)  =  g_0 \cdot T \cdot \frac {2}{\pi}\cdot \frac{(1+4 f T ) \cdot {\rm cos} ( 2 \pi f T )+ (1-4 f T ) \cdot {\rm cos} ( 2 \pi f T )}{1 - (4 f T)^2 } =  \frac {4}{\pi}\cdot g_0 \cdot T \cdot \frac{ {\rm cos} ( 2 \pi f T )}{1 - (4 f T)^2 }\hspace{0.05cm}.$$  
 
:$$\Rightarrow \hspace{0.3cm} G(f)  =  g_0 \cdot T \cdot \frac {2}{\pi}\cdot \frac{(1+4 f T ) \cdot {\rm cos} ( 2 \pi f T )+ (1-4 f T ) \cdot {\rm cos} ( 2 \pi f T )}{1 - (4 f T)^2 } =  \frac {4}{\pi}\cdot g_0 \cdot T \cdot \frac{ {\rm cos} ( 2 \pi f T )}{1 - (4 f T)^2 }\hspace{0.05cm}.$$  
  
*Die Nullstellen von $G(f)$ werden allein durch die Cosinusfunktion im Zähler bestimmt und würden bei den Frequenzen $f · T = 0.25, 0.75, 1.25,$ ... liegen.  
+
*The zeroes of&nbsp; $G(f)$&nbsp; are exclusively determined by the cosine function in the numerator, and are found at the frequencies&nbsp; $f · T = 0.25,\ 0.75,\ 1.25,$&nbsp; ...  
*Allerdings wird die erste Nullstelle bei $f · T = 0.25$ durch die gleichzeitige Nullstelle des Nenners aufgehoben. Deshalb gilt:
+
*However, the first zero at&nbsp; $f · T = 0.25$&nbsp; is cancelled out by the simultaneously occuring zero in the denominator.&nbsp; Therefore:
 
:$$f_1 \hspace{0.15cm}\underline {= 0.75} \cdot 1/T \hspace{0.05cm}.$$
 
:$$f_1 \hspace{0.15cm}\underline {= 0.75} \cdot 1/T \hspace{0.05cm}.$$
  
Line 71: Line 80:
  
  
[[Category:Aufgaben zu Modulationsverfahren|^4.4 Nichtlineare digitale Modulation^]]
+
[[Category:Modulation Methods: Exercises|^4.4 Non-linear Digital Modulation^]]

Latest revision as of 10:50, 12 April 2022

MSK basic pulse and its spectrum

The fundamental pulse that is always required to  realize MSK as Offset–QPSK   has the form shown in the graph above:

$$g_{\rm MSK}(t) = \left\{ \begin{array}{l} g_0 \cdot \cos (\pi/2 \cdot t/T) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{10}c} | t | \le T \hspace{0.05cm}, \\ {\rm otherwise}\hspace{0.05cm}. \\ \end{array}$$

The spectral function  $G(f)$ is drawn below, that is, the  Fourier transform  of  $g(t)$.

The corresponding equation is to be determined in this task, by considering:

$$g(t) = c(t) \cdot r(t)\hspace{0.05cm}.$$

The following abbreviations are used here:

  • $c(t)$  is a cosine oscillation with amplitude  $1$  and  frequency  $f_0$ (yet to be determined).
  • $r(t)$  is a square wave function with amplitude $g_0$  and duration $2T$.





Hints:


Questions

1

How should one choose the frequency $f_0$  of the cosine oscillation  $c(t)$  so that  $g(t) = c(t) · r(t)$ ?

$f_0 \ = \ $

$\ \cdot 1/T$

2

What is the spectrum  $R(f)$  of the rectangular function  $r(t)$?  What spectral value occurs when $f = 0$ ?

$R(f=0) \ = \ $

$\ \cdot g_0 \cdot T$

3

Calculate the spectrun  $G(f)$  of the MSK pulse  $g(t)$, particularly the spectral value at  $f = 0$.

$G(f=0) \ = \ $

$\ \cdot g_0 \cdot T$

4

Summarize the result of question   (3)  in one term. At what frequency  $f_1$  does  $G(f)$  have its first zero?

$f_1 \ = \ $

$\ \cdot 1/T$


Solution

(1)  The period of the cosine signal must be  $T_0 = 4T$ .  Thus, the frequency is $f_0 = 1/T_0\hspace{0.15cm}\underline {= 0.25} · 1/T$.


(2)  The spectral function of a rectangular pulse of height  $g_0$  and duration $ 2T$  is:

$$R(f) = g_0 \cdot 2 T \cdot {\rm si} ( \pi f \cdot 2T )\hspace{0.2cm}{\rm mit}\hspace{0.2cm}{\rm si} (x) = \sin(x)/x \hspace{0.3cm} \Rightarrow \hspace{0.3cm}R(f = 0) \hspace{0.15cm}\underline {= 2} \cdot g_0 \cdot T\hspace{0.05cm}.$$


(3)  When  $g(t) = c(t) · r(t)$ , it follows from the convolution theorem that:   $ G(f) = C(f) \star R(f)\hspace{0.05cm}.$

  • The spectral function  $C(f)$  consists of two Dirac functions at  $± f_0$, each with weight  $1/2$.  From this follows:
$$ G(f) = 2 \cdot g_0 \cdot T \cdot \big [ 1/2 \cdot \delta (f - f_0 ) + 1/2 \cdot \delta (f + f_0 )\big ] \star {\rm si} ( 2 \pi f T )= g_0 \cdot T \cdot \big [ {\rm si} ( 2 \pi T \cdot (f - f_0 ) ) + {\rm si} ( 2 \pi T \cdot (f + f_0 ) ) \big ] \hspace{0.05cm}.$$
  • Using the result  $f_0 = 1/(4T)$  from question  (1) , it further holds that:
$$G(f) = g_0 \cdot T \cdot \big [ {\rm si} ( 2 \pi f T - \pi / 2 ) + {\rm si} ( 2 \pi f T + \pi / 2) \big ]$$
$$\Rightarrow \hspace{0.3cm} G(f = 0) = g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{-0.02cm}\cdot\hspace{-0.02cm} \big [ {\rm si} ( - \pi/2 ) + {\rm si} ( +\pi/2 ) \big ] = 2 \cdot g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{-0.02cm}\cdot\hspace{-0.02cm} {\rm si} ( \pi/2 ) = 2 \hspace{-0.02cm}\cdot\hspace{-0.02cm} g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{-0.02cm}\cdot\hspace{-0.02cm} \frac {{\rm sin}({\pi}/{2}) } { {\pi}/{2} } ={4}/{\pi} \hspace{-0.02cm}\cdot\hspace{-0.02cm} g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{0.15cm}\underline {\approx 1.273} \hspace{-0.02cm}\cdot\hspace{-0.02cm} g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T .$$


(4)  By writing out the  $\rm si$–function, with   $\sin (α ± π/2) = ± \cos(α)$, one gets:

$$G(f) = g_0 \cdot T \cdot \left [ \frac{{\rm sin} ( 2 \pi f T - \pi / 2 )}{2 \pi f T - \pi / 2 } + \frac{{\rm sin} ( 2 \pi f T + \pi / 2 )}{2 \pi f T + \pi / 2 } \right ]= g_0 \cdot T \cdot \frac {2}{\pi}\cdot\left [ \frac{-{\rm cos} ( 2 \pi f T )}{4 f T - 1 } + \frac{{\rm cos} ( 2 \pi f T )}{4 f T + 1 } \right ]$$
$$\Rightarrow \hspace{0.3cm} G(f) = g_0 \cdot T \cdot \frac {2}{\pi}\cdot \frac{(1+4 f T ) \cdot {\rm cos} ( 2 \pi f T )+ (1-4 f T ) \cdot {\rm cos} ( 2 \pi f T )}{1 - (4 f T)^2 } = \frac {4}{\pi}\cdot g_0 \cdot T \cdot \frac{ {\rm cos} ( 2 \pi f T )}{1 - (4 f T)^2 }\hspace{0.05cm}.$$
  • The zeroes of  $G(f)$  are exclusively determined by the cosine function in the numerator, and are found at the frequencies  $f · T = 0.25,\ 0.75,\ 1.25,$  ...
  • However, the first zero at  $f · T = 0.25$  is cancelled out by the simultaneously occuring zero in the denominator.  Therefore:
$$f_1 \hspace{0.15cm}\underline {= 0.75} \cdot 1/T \hspace{0.05cm}.$$