Difference between revisions of "Aufgaben:Exercise 4.15Z: MSK Basic Pulse and MSK Spectrum"

From LNTwww
m (Text replacement - "[[Signaldarstellung/" to "[[Signal_Representation/")
 
(14 intermediate revisions by 3 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1744__Mod_Z_4_14.png|right|frame|MSK–Grundimpuls  und  –Spektrum]]
+
[[File:P_ID1744__Mod_Z_4_14.png|right|frame|MSK basic pulse and its spectrum]]
Der zur Realisierung der  [[Modulationsverfahren/Nichtlineare_digitale_Modulation#Realisierung_der_MSK_als_Offset.E2.80.93QPSK|MSK mittels Offset–QPSK]]   stets erforderliche Grundimpuls hat die in der Grafik oben dargestellte Form:
+
The fundamental pulse that is always required to  [[Modulation_Methods/Nonlinear_Digital_Modulation#Realizing_MSK_as_Offset.E2.80.93QPSK|realize MSK as Offset–QPSK]]   has the form shown in the graph above:
:$$g_{\rm MSK}(t) = \left\{ \begin{array}{l} g_0 \cdot \cos (\pi/2 \cdot t/T) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{10}c} | t | \le T \hspace{0.05cm}, \\ {\rm sonst}\hspace{0.05cm}. \\ \end{array}$$
+
:$$g_{\rm MSK}(t) = \left\{ \begin{array}{l} g_0 \cdot \cos (\pi/2 \cdot t/T) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{10}c} | t | \le T \hspace{0.05cm}, \\ {\rm otherwise}\hspace{0.05cm}. \\ \end{array}$$
Darunter gezeichnet ist die Spektralfunktion  $G(f)$, also die  [[Signal_Representation/Fouriertransformation_und_-rücktransformation#Das_erste_Fourierintegral|Fouriertransformierte]]  von  $g(t)$.  
+
The spectral function  $G(f)$ is drawn below, that is, the  [[Signal_Representation/Fourier_Transform_and_its_Inverse#The_first_Fourier_integral|Fourier transform]]  of  $g(t)$.  
  
Die dazugehörige Gleichung soll in dieser Aufgabe ermittelt werden, wobei zu berücksichtigen ist:
+
The corresponding equation is to be determined in this task, by considering:  
 
:$$g(t) = c(t) \cdot r(t)\hspace{0.05cm}.$$
 
:$$g(t) = c(t) \cdot r(t)\hspace{0.05cm}.$$
Hierbei sind folgende  Abkürzungen verwendet:
+
The following abbreviations are used here:
* $c(t)$  ist eine Cosinusschwingung mit Amplitude  $1$  und  (noch zu bestimmender)  Frequenz  $f_0$.
+
* $c(t)$  is a cosine oscillation with amplitude  $1$  and  frequency  $f_0$ (yet to be determined).
* $r(t)$  ist eine Rechteckfunktion mit der Amplitude  $g_0$  und der Dauer  $2T$.
+
* $r(t)$  is a square wave function with amplitude $g_0$  and duration $2T$.
  
  
Line 21: Line 21:
  
  
''Hinweise:''  
+
''Hints:''  
*Die Aufgabe gehört zum  Kapitel  [[Modulationsverfahren/Nichtlineare_digitale_Modulation|Nichtlineare digitale Modulation]].
+
*This exercise belongs to the chapter  [[Modulation_Methods/Nonlinear_Digital_Modulation|Nonlinear Digital Modulation]].
*Bezug genommen wird insbesondere auf den Abschnitt  [[Modulationsverfahren/Nichtlineare_digitale_Modulation#Realisierung_der_MSK_als_Offset.E2.80.93QPSK|Realisierung der MSK als Offset-QPSK]].
+
*Particular reference is made to the page  [[Modulation_Methods/Nonlinear_Digital_Modulation#Realizing_MSK_as_Offset.E2.80.93QPSK|Realizing MSK as Offset–QPSK]].
 
   
 
   
*Das hier gewonnene Ergebnis wird auch in der  [[Aufgaben:4.15_MSK_im_Vergleich_mit_BPSK_und_QPSK|Aufgabe 4.15]]  verwendet.
+
*The result obtained here is also used in  [[Aufgaben:Exercise_4.15:_MSK_Compared_with_BPSK_and_QPSK|Exercise 4.15]] .
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie ist die Frequenz &nbsp;$f_0$&nbsp; der Cosinusschwingung &nbsp;$c(t)$&nbsp; zu wählen, damit &nbsp;$g(t) = c(t) · r(t)$&nbsp; gilt?
+
{How should one choose the frequency&nbsp;$f_0$&nbsp; of the cosine oscillation &nbsp;$c(t)$&nbsp; so that  &nbsp;$g(t) = c(t) · r(t)$&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
$f_0 \ = \ $  { 0.25 3% } $\ \cdot 1/T$
 
$f_0 \ = \ $  { 0.25 3% } $\ \cdot 1/T$
  
{Wie lautet das Spektrum &nbsp;$R(f)$&nbsp; der Rechteckfunktion &nbsp;$r(t)$?&nbsp; Welcher Spektralwert tritt bei &nbsp;$f = 0$&nbsp; auf?
+
{What is the spectrum &nbsp;$R(f)$&nbsp; of the rectangular function &nbsp;$r(t)$?&nbsp; What spectral value occurs when&nbsp;$f = 0$&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
$R(f=0) \ = \ $  { 2 3%  } $\ \cdot g_0 \cdot T$  
 
$R(f=0) \ = \ $  { 2 3%  } $\ \cdot g_0 \cdot T$  
  
{Berechnen Sie das Spektrum &nbsp;$G(f)$&nbsp; des MSK&ndash;Impuses &nbsp;$g(t)$, insbesondere den Spektralwert bei &nbsp;$f = 0$.
+
{Calculate the spectrun &nbsp;$G(f)$&nbsp; of the MSK pulse &nbsp;$g(t)$, particularly the spectral value at &nbsp;$f = 0$.
 
|type="{}"}
 
|type="{}"}
 
$G(f=0) \ = \ $ { 1.273 3% } $\ \cdot g_0 \cdot T$
 
$G(f=0) \ = \ $ { 1.273 3% } $\ \cdot g_0 \cdot T$
  
{Fassen Sie das Ergebnis der Teilaufgabe&nbsp; '''(3)'''&nbsp; in einem Term zusammen.&nbsp; Bei welcher Frequenz &nbsp;$f_1$&nbsp; besitzt &nbsp;$G(f)$&nbsp; seine erste Nullstelle?
+
{Summarize the result of question &nbsp; '''(3)'''&nbsp; in one term. At what frequency &nbsp;$f_1$&nbsp; does &nbsp;$G(f)$&nbsp; have its first zero?
 
|type="{}"}
 
|type="{}"}
 
$f_1 \ = \ $ { 0.75 3% } $\ \cdot 1/T$
 
$f_1 \ = \ $ { 0.75 3% } $\ \cdot 1/T$
Line 49: Line 49:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die Periodendauer des Cosinussignals muss&nbsp; $T_0 = 4T$&nbsp; sein.&nbsp; Damit ist die Frequenz $f_0 = 1/T_0\hspace{0.15cm}\underline {= 0.25} · 1/T$.
+
'''(1)'''&nbsp; The period of the cosine signal must be&nbsp; $T_0 = 4T$&nbsp;.&nbsp; Thus, the frequency is $f_0 = 1/T_0\hspace{0.15cm}\underline {= 0.25} · 1/T$.
  
  
'''(2)'''&nbsp; Die Spektralfunktion eines Rechteckimpulses der Höhe&nbsp; $g_0$&nbsp; und der Dauer&nbsp;$ 2T$&nbsp; lautet:
+
'''(2)'''&nbsp; The spectral function of a rectangular pulse of height&nbsp; $g_0$&nbsp; and duration&nbsp;$ 2T$&nbsp; is:
 
:$$R(f) = g_0 \cdot 2 T \cdot {\rm si} ( \pi f \cdot 2T )\hspace{0.2cm}{\rm mit}\hspace{0.2cm}{\rm si} (x) = \sin(x)/x \hspace{0.3cm}
 
:$$R(f) = g_0 \cdot 2 T \cdot {\rm si} ( \pi f \cdot 2T )\hspace{0.2cm}{\rm mit}\hspace{0.2cm}{\rm si} (x) = \sin(x)/x \hspace{0.3cm}
 
  \Rightarrow \hspace{0.3cm}R(f = 0) \hspace{0.15cm}\underline {= 2} \cdot g_0 \cdot T\hspace{0.05cm}.$$
 
  \Rightarrow \hspace{0.3cm}R(f = 0) \hspace{0.15cm}\underline {= 2} \cdot g_0 \cdot T\hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp; Aus&nbsp; $g(t) = c(t) · r(t)$&nbsp; folgt nach dem Faltungssatz: &nbsp; $ G(f) = C(f) \star R(f)\hspace{0.05cm}.$  
+
'''(3)'''&nbsp; When&nbsp; $g(t) = c(t) · r(t)$&nbsp;, it follows from the convolution theorem that: &nbsp; $ G(f) = C(f) \star R(f)\hspace{0.05cm}.$  
*Die Spektralfunktion&nbsp; $C(f)$&nbsp; besteht aus zwei Diracfunktionen bei&nbsp; $± f_0$, jeweils mit dem Gewicht&nbsp; $1/2$.&nbsp; Daraus folgt:
+
*The spectral function&nbsp; $C(f)$&nbsp; consists of two  Dirac functions at&nbsp; $± f_0$, each with weight&nbsp; $1/2$.&nbsp; From this follows:
 
:$$ G(f)  =  2 \cdot g_0 \cdot T \cdot \big [ 1/2 \cdot \delta (f - f_0 ) + 1/2 \cdot \delta (f + f_0 )\big ] \star {\rm si} ( 2 \pi f T )=  g_0 \cdot T \cdot \big [ {\rm si} ( 2 \pi T \cdot (f - f_0 ) ) + {\rm si} ( 2 \pi T \cdot (f + f_0 ) ) \big ] \hspace{0.05cm}.$$
 
:$$ G(f)  =  2 \cdot g_0 \cdot T \cdot \big [ 1/2 \cdot \delta (f - f_0 ) + 1/2 \cdot \delta (f + f_0 )\big ] \star {\rm si} ( 2 \pi f T )=  g_0 \cdot T \cdot \big [ {\rm si} ( 2 \pi T \cdot (f - f_0 ) ) + {\rm si} ( 2 \pi T \cdot (f + f_0 ) ) \big ] \hspace{0.05cm}.$$
*Mit dem Ergebnis&nbsp; $f_0 = 1/(4T)$&nbsp; der Teilaufgabe&nbsp; '''(1)'''&nbsp; gilt weiter:
+
*Using the result&nbsp; $f_0 = 1/(4T)$&nbsp; from question&nbsp; '''(1)'''&nbsp;, it further holds that:
 
:$$G(f) = g_0 \cdot T \cdot \big [ {\rm si} ( 2 \pi f T - \pi / 2 ) + {\rm si} ( 2 \pi f T + \pi / 2) \big ]$$
 
:$$G(f) = g_0 \cdot T \cdot \big [ {\rm si} ( 2 \pi f T - \pi / 2 ) + {\rm si} ( 2 \pi f T + \pi / 2) \big ]$$
 
:$$\Rightarrow \hspace{0.3cm} G(f = 0)  =  g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{-0.02cm}\cdot\hspace{-0.02cm} \big [ {\rm si} ( - \pi/2 ) + {\rm si} ( +\pi/2 ) \big ] = 2 \cdot g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{-0.02cm}\cdot\hspace{-0.02cm} {\rm si} ( \pi/2 ) = 2 \hspace{-0.02cm}\cdot\hspace{-0.02cm} g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{-0.02cm}\cdot\hspace{-0.02cm} \frac {{\rm sin}({\pi}/{2}) } { {\pi}/{2} } ={4}/{\pi} \hspace{-0.02cm}\cdot\hspace{-0.02cm} g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{0.15cm}\underline {\approx 1.273} \hspace{-0.02cm}\cdot\hspace{-0.02cm} g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T .$$
 
:$$\Rightarrow \hspace{0.3cm} G(f = 0)  =  g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{-0.02cm}\cdot\hspace{-0.02cm} \big [ {\rm si} ( - \pi/2 ) + {\rm si} ( +\pi/2 ) \big ] = 2 \cdot g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{-0.02cm}\cdot\hspace{-0.02cm} {\rm si} ( \pi/2 ) = 2 \hspace{-0.02cm}\cdot\hspace{-0.02cm} g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{-0.02cm}\cdot\hspace{-0.02cm} \frac {{\rm sin}({\pi}/{2}) } { {\pi}/{2} } ={4}/{\pi} \hspace{-0.02cm}\cdot\hspace{-0.02cm} g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{0.15cm}\underline {\approx 1.273} \hspace{-0.02cm}\cdot\hspace{-0.02cm} g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T .$$
  
  
'''(4)'''&nbsp; Schreibt man die&nbsp; $\rm si$–Funktion aus, so erhält man mit&nbsp; $\sin (α ± π/2) = ± \cos(α)$:
+
'''(4)'''&nbsp; By writing out the&nbsp; $\rm si$–function, with &nbsp; $\sin (α ± π/2) = ± \cos(α)$, one gets:
 
:$$G(f)  =  g_0 \cdot T \cdot \left [ \frac{{\rm sin} ( 2 \pi f T - \pi / 2 )}{2 \pi f T - \pi / 2 } + \frac{{\rm sin} ( 2 \pi f T + \pi / 2 )}{2 \pi f T + \pi / 2 } \right ]=  g_0 \cdot T \cdot \frac {2}{\pi}\cdot\left [ \frac{-{\rm cos} ( 2 \pi f T )}{4 f T - 1 } + \frac{{\rm cos} ( 2 \pi f T )}{4 f T + 1 } \right ]$$  
 
:$$G(f)  =  g_0 \cdot T \cdot \left [ \frac{{\rm sin} ( 2 \pi f T - \pi / 2 )}{2 \pi f T - \pi / 2 } + \frac{{\rm sin} ( 2 \pi f T + \pi / 2 )}{2 \pi f T + \pi / 2 } \right ]=  g_0 \cdot T \cdot \frac {2}{\pi}\cdot\left [ \frac{-{\rm cos} ( 2 \pi f T )}{4 f T - 1 } + \frac{{\rm cos} ( 2 \pi f T )}{4 f T + 1 } \right ]$$  
 
:$$\Rightarrow \hspace{0.3cm} G(f)  =  g_0 \cdot T \cdot \frac {2}{\pi}\cdot \frac{(1+4 f T ) \cdot {\rm cos} ( 2 \pi f T )+ (1-4 f T ) \cdot {\rm cos} ( 2 \pi f T )}{1 - (4 f T)^2 } =  \frac {4}{\pi}\cdot g_0 \cdot T \cdot \frac{ {\rm cos} ( 2 \pi f T )}{1 - (4 f T)^2 }\hspace{0.05cm}.$$  
 
:$$\Rightarrow \hspace{0.3cm} G(f)  =  g_0 \cdot T \cdot \frac {2}{\pi}\cdot \frac{(1+4 f T ) \cdot {\rm cos} ( 2 \pi f T )+ (1-4 f T ) \cdot {\rm cos} ( 2 \pi f T )}{1 - (4 f T)^2 } =  \frac {4}{\pi}\cdot g_0 \cdot T \cdot \frac{ {\rm cos} ( 2 \pi f T )}{1 - (4 f T)^2 }\hspace{0.05cm}.$$  
  
*Die Nullstellen von&nbsp; $G(f)$&nbsp; werden allein durch die Cosinusfunktion im Zähler bestimmt und würden bei den Frequenzen&nbsp; $f · T = 0.25,\ 0.75,\ 1.25,$&nbsp; ... liegen.  
+
*The zeroes of&nbsp; $G(f)$&nbsp; are exclusively determined by the cosine function in the numerator, and are found at the frequencies&nbsp; $f · T = 0.25,\ 0.75,\ 1.25,$&nbsp; ...  
*Allerdings wird die erste Nullstelle bei&nbsp; $f · T = 0.25$&nbsp; durch die gleichzeitige Nullstelle des Nenners aufgehoben.&nbsp; Deshalb gilt:
+
*However, the first zero at&nbsp; $f · T = 0.25$&nbsp; is cancelled out by the simultaneously occuring zero in the denominator.&nbsp; Therefore:
 
:$$f_1 \hspace{0.15cm}\underline {= 0.75} \cdot 1/T \hspace{0.05cm}.$$
 
:$$f_1 \hspace{0.15cm}\underline {= 0.75} \cdot 1/T \hspace{0.05cm}.$$
  
Line 80: Line 80:
  
  
[[Category:Aufgaben zu Modulationsverfahren|^4.4 Nichtlineare digitale Modulation^]]
+
[[Category:Modulation Methods: Exercises|^4.4 Non-linear Digital Modulation^]]

Latest revision as of 10:50, 12 April 2022

MSK basic pulse and its spectrum

The fundamental pulse that is always required to  realize MSK as Offset–QPSK   has the form shown in the graph above:

$$g_{\rm MSK}(t) = \left\{ \begin{array}{l} g_0 \cdot \cos (\pi/2 \cdot t/T) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{10}c} | t | \le T \hspace{0.05cm}, \\ {\rm otherwise}\hspace{0.05cm}. \\ \end{array}$$

The spectral function  $G(f)$ is drawn below, that is, the  Fourier transform  of  $g(t)$.

The corresponding equation is to be determined in this task, by considering:

$$g(t) = c(t) \cdot r(t)\hspace{0.05cm}.$$

The following abbreviations are used here:

  • $c(t)$  is a cosine oscillation with amplitude  $1$  and  frequency  $f_0$ (yet to be determined).
  • $r(t)$  is a square wave function with amplitude $g_0$  and duration $2T$.





Hints:


Questions

1

How should one choose the frequency $f_0$  of the cosine oscillation  $c(t)$  so that  $g(t) = c(t) · r(t)$ ?

$f_0 \ = \ $

$\ \cdot 1/T$

2

What is the spectrum  $R(f)$  of the rectangular function  $r(t)$?  What spectral value occurs when $f = 0$ ?

$R(f=0) \ = \ $

$\ \cdot g_0 \cdot T$

3

Calculate the spectrun  $G(f)$  of the MSK pulse  $g(t)$, particularly the spectral value at  $f = 0$.

$G(f=0) \ = \ $

$\ \cdot g_0 \cdot T$

4

Summarize the result of question   (3)  in one term. At what frequency  $f_1$  does  $G(f)$  have its first zero?

$f_1 \ = \ $

$\ \cdot 1/T$


Solution

(1)  The period of the cosine signal must be  $T_0 = 4T$ .  Thus, the frequency is $f_0 = 1/T_0\hspace{0.15cm}\underline {= 0.25} · 1/T$.


(2)  The spectral function of a rectangular pulse of height  $g_0$  and duration $ 2T$  is:

$$R(f) = g_0 \cdot 2 T \cdot {\rm si} ( \pi f \cdot 2T )\hspace{0.2cm}{\rm mit}\hspace{0.2cm}{\rm si} (x) = \sin(x)/x \hspace{0.3cm} \Rightarrow \hspace{0.3cm}R(f = 0) \hspace{0.15cm}\underline {= 2} \cdot g_0 \cdot T\hspace{0.05cm}.$$


(3)  When  $g(t) = c(t) · r(t)$ , it follows from the convolution theorem that:   $ G(f) = C(f) \star R(f)\hspace{0.05cm}.$

  • The spectral function  $C(f)$  consists of two Dirac functions at  $± f_0$, each with weight  $1/2$.  From this follows:
$$ G(f) = 2 \cdot g_0 \cdot T \cdot \big [ 1/2 \cdot \delta (f - f_0 ) + 1/2 \cdot \delta (f + f_0 )\big ] \star {\rm si} ( 2 \pi f T )= g_0 \cdot T \cdot \big [ {\rm si} ( 2 \pi T \cdot (f - f_0 ) ) + {\rm si} ( 2 \pi T \cdot (f + f_0 ) ) \big ] \hspace{0.05cm}.$$
  • Using the result  $f_0 = 1/(4T)$  from question  (1) , it further holds that:
$$G(f) = g_0 \cdot T \cdot \big [ {\rm si} ( 2 \pi f T - \pi / 2 ) + {\rm si} ( 2 \pi f T + \pi / 2) \big ]$$
$$\Rightarrow \hspace{0.3cm} G(f = 0) = g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{-0.02cm}\cdot\hspace{-0.02cm} \big [ {\rm si} ( - \pi/2 ) + {\rm si} ( +\pi/2 ) \big ] = 2 \cdot g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{-0.02cm}\cdot\hspace{-0.02cm} {\rm si} ( \pi/2 ) = 2 \hspace{-0.02cm}\cdot\hspace{-0.02cm} g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{-0.02cm}\cdot\hspace{-0.02cm} \frac {{\rm sin}({\pi}/{2}) } { {\pi}/{2} } ={4}/{\pi} \hspace{-0.02cm}\cdot\hspace{-0.02cm} g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T \hspace{0.15cm}\underline {\approx 1.273} \hspace{-0.02cm}\cdot\hspace{-0.02cm} g_0 \hspace{-0.02cm}\cdot\hspace{-0.02cm} T .$$


(4)  By writing out the  $\rm si$–function, with   $\sin (α ± π/2) = ± \cos(α)$, one gets:

$$G(f) = g_0 \cdot T \cdot \left [ \frac{{\rm sin} ( 2 \pi f T - \pi / 2 )}{2 \pi f T - \pi / 2 } + \frac{{\rm sin} ( 2 \pi f T + \pi / 2 )}{2 \pi f T + \pi / 2 } \right ]= g_0 \cdot T \cdot \frac {2}{\pi}\cdot\left [ \frac{-{\rm cos} ( 2 \pi f T )}{4 f T - 1 } + \frac{{\rm cos} ( 2 \pi f T )}{4 f T + 1 } \right ]$$
$$\Rightarrow \hspace{0.3cm} G(f) = g_0 \cdot T \cdot \frac {2}{\pi}\cdot \frac{(1+4 f T ) \cdot {\rm cos} ( 2 \pi f T )+ (1-4 f T ) \cdot {\rm cos} ( 2 \pi f T )}{1 - (4 f T)^2 } = \frac {4}{\pi}\cdot g_0 \cdot T \cdot \frac{ {\rm cos} ( 2 \pi f T )}{1 - (4 f T)^2 }\hspace{0.05cm}.$$
  • The zeroes of  $G(f)$  are exclusively determined by the cosine function in the numerator, and are found at the frequencies  $f · T = 0.25,\ 0.75,\ 1.25,$  ...
  • However, the first zero at  $f · T = 0.25$  is cancelled out by the simultaneously occuring zero in the denominator.  Therefore:
$$f_1 \hspace{0.15cm}\underline {= 0.75} \cdot 1/T \hspace{0.05cm}.$$