Difference between revisions of "Aufgaben:Exercise 1.1Z: Non-redundant Binary Source"

From LNTwww
 
(31 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Systemkomponenten eines Basisbandübertragungssystems
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/System_Components_of_a_Baseband_Transmission_System
 
}}
 
}}
 +
[[File:P_ID1257__Dig_Z_1_1.png|right|frame|Dirac-shaped source signal]]
 +
Any digital source can be completely described by its source symbol sequence
 +
:$$\langle q_\nu \rangle = \langle \hspace{0.05cm}q_0 \hspace{0.05cm}, q_1 \hspace{0.05cm}, q_2 \hspace{0.05cm}, ... \hspace{0.05cm} \rangle.$$
 +
Contrary to the theory part,  here the control variable  $\nu$  starts with zero.  If each individual symbol  $q_\nu$  originates from the symbol set  $\{\rm L, \ H\}$,  it is called a binary source.
  
 +
Using the symbol spacing  $T$,  one can also characterize the source symbol sequence  $\langle q_\nu \rangle$  in an equivalent way by the Dirac-shaped source signal
 +
:$$q(t) = \sum_{(\nu)} a_\nu \cdot {\rm \delta} ( t - \nu \cdot T),$$
 +
which rather corresponds to a system-theoretic approach.  Here, we denote  $a_\nu$  as the amplitude coefficients.
 +
*In the case of a binary unipolar digital signal transmission holds:
 +
:$$a_\nu = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}c} q_\nu = \mathbf{H} \hspace{0.05cm}, \\ q_\nu = \mathbf{L} \hspace{0.05cm}. \\ \end{array}$$
 +
*Correspondingly,  in the case of a bipolar system:
 +
:$$a_\nu = \left\{ \begin{array}{c} +1 \\ -1 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}c} q_\nu = \mathbf{H} \hspace{0.05cm}, \\ q_\nu = \mathbf{L} \hspace{0.05cm}. \\ \end{array}$$
  
[[File:P_ID1257__Dig_Z_1_1.png|right|]]
+
The diagram shows the Dirac-shaped source signal  $q(t)$  of a binary source.  It is known from this source that it is redundancy-free.  This statement is quite relevant for solving the problems.
Eine jede digitale Quelle kann durch ihre Quellensymbolfolge
 
$$\langle q_\nu \rangle = \langle \hspace{0.05cm}q_0 \hspace{0.05cm}, q_1 \hspace{0.05cm}, q_2 \hspace{0.05cm}, ... \hspace{0.05cm} \rangle$$
 
vollständig beschrieben werden, wobei hier entgegen dem Theorieteil die Laufvariable $\nu$ mit 0 beginnt. Entstammt jedes einzelne Symbol $$q_\nu$$
 
===Fragebogen===
 
  
 +
 +
 +
 +
 +
 +
Notes:
 +
*The exercise belongs to the chapter  [[Digital_Signal_Transmission/System_Components_of_a_Baseband_Transmission_System|"System Components of a Baseband Transmission System"]].
 +
*Reference is made in particular to the section  [[Digital_Signal_Transmission/System_Components_of_a_Baseband_Transmission_System#Descriptive_variables_of_the_digital_source|"Descriptive variables of the digital source"]].
 +
*In the literature,  the two possible binary symbols are usually designated as  $\rm L$  and  $\rm 0$. 
 +
*To avoid the somewhat confusing mapping  $a_\nu = 1$  for  $q_\nu =\rm 0$  and  $a_\nu = 0$  for  $q_\nu =\rm L$,  we use the symbols  $\rm L$  ("Low") and  $\rm H$  ("High") in our learning tutorial.
 +
 +
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
  
 +
{What is the symbol distance &nbsp;$T$?
 +
|type="{}"}
 +
$T \ = \ $  { 2 3% } $\ \rm &micro; s$
  
{Wie groß ist der Symbolabstand?
+
{What is the bit rate &nbsp;$R$ output by the source?
 
|type="{}"}
 
|type="{}"}
$T$ = { 2 3% } $\mu s$
+
$R \ = \ $ { 500 3% } $\ \rm kbit/s$
 +
 
 +
{Is this representation unipolar or bipolar?
 +
|type="()"}
 +
- The symbol sequence is unipolar.
 +
+ The symbol sequence is bipolar.
  
{Handelt es sich hierbei um die unipolare oder bipolare Repräsentation?
+
{What is the source symbol &nbsp;$q_2$?
|type="[]"}
+
|type="()"}
- Die Symbolfolge ist unipolar.
+
+ $q_2 = \rm L$,
+ Die Symbolfolge ist bipolar.
+
- $q_2 = \rm H$.
  
 +
{What is the symbol probability &nbsp;$p_{\rm H} = {\rm Pr}(q_\nu = \rm H$)?
 +
|type="{}"}
 +
$p_{\rm H} \ = \ $ { 0.5 3% }
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;
+
'''(1)'''&nbsp; According to the diagram,&nbsp; the distance between two symbols is&nbsp; $\underline{T = 2\ \rm &micro; s}$.
'''(2)'''&nbsp;
+
 
'''(3)'''&nbsp;
+
 
'''(4)'''&nbsp;
+
'''(2)'''&nbsp; With this redundancy-free binary source &ndash; and only with such a source &ndash; the bit rate is $R = 1/T\hspace{0.15cm}\underline{=500 \ \rm kbit/s}$.
'''(5)'''&nbsp;
+
 
'''(6)'''&nbsp;
+
 
 +
'''(3)'''&nbsp; The possible amplitude coefficients are $\pm 1$.&nbsp; Therefore,&nbsp; the given symbol sequence is&nbsp; <u>bipolar</u>.
 +
 
 +
 
 +
'''(4)'''&nbsp; The amplitude coefficient&nbsp; $a_2$&nbsp; can be read at&nbsp; $2T = 4 \ \rm &micro; s$.&nbsp; With bipolar mapping,&nbsp; it follows that&nbsp; $a_2 = -1$&nbsp; for symbol&nbsp; $q_2 \hspace{0.15cm}\underline {=\rm L}$.
 +
 
 +
 
 +
'''(5)'''&nbsp; Even if the diagram suggests otherwise for the short time interval shown here:&nbsp; For a redundancy-free binary source,&nbsp; in addition to the statistical independence of the symbols,&nbsp; $p_{\rm H} = p_{\rm L}\hspace{0.15cm}\underline{ = 0.5}$&nbsp; (equally probable symbols)&nbsp; must also hold.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 38: Line 76:
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^1.1 Basisband-Systemkomponenten^]]
+
[[Category:Digital Signal Transmission: Exercises|^1.1 Baseband System Components^]]

Latest revision as of 12:45, 29 April 2022

Dirac-shaped source signal

Any digital source can be completely described by its source symbol sequence

$$\langle q_\nu \rangle = \langle \hspace{0.05cm}q_0 \hspace{0.05cm}, q_1 \hspace{0.05cm}, q_2 \hspace{0.05cm}, ... \hspace{0.05cm} \rangle.$$

Contrary to the theory part,  here the control variable  $\nu$  starts with zero.  If each individual symbol  $q_\nu$  originates from the symbol set  $\{\rm L, \ H\}$,  it is called a binary source.

Using the symbol spacing  $T$,  one can also characterize the source symbol sequence  $\langle q_\nu \rangle$  in an equivalent way by the Dirac-shaped source signal

$$q(t) = \sum_{(\nu)} a_\nu \cdot {\rm \delta} ( t - \nu \cdot T),$$

which rather corresponds to a system-theoretic approach.  Here, we denote  $a_\nu$  as the amplitude coefficients.

  • In the case of a binary unipolar digital signal transmission holds:
$$a_\nu = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}c} q_\nu = \mathbf{H} \hspace{0.05cm}, \\ q_\nu = \mathbf{L} \hspace{0.05cm}. \\ \end{array}$$
  • Correspondingly,  in the case of a bipolar system:
$$a_\nu = \left\{ \begin{array}{c} +1 \\ -1 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}c} q_\nu = \mathbf{H} \hspace{0.05cm}, \\ q_\nu = \mathbf{L} \hspace{0.05cm}. \\ \end{array}$$

The diagram shows the Dirac-shaped source signal  $q(t)$  of a binary source.  It is known from this source that it is redundancy-free.  This statement is quite relevant for solving the problems.




Notes:

  • The exercise belongs to the chapter  "System Components of a Baseband Transmission System".
  • Reference is made in particular to the section  "Descriptive variables of the digital source".
  • In the literature,  the two possible binary symbols are usually designated as  $\rm L$  and  $\rm 0$. 
  • To avoid the somewhat confusing mapping  $a_\nu = 1$  for  $q_\nu =\rm 0$  and  $a_\nu = 0$  for  $q_\nu =\rm L$,  we use the symbols  $\rm L$  ("Low") and  $\rm H$  ("High") in our learning tutorial.


Questions

1

What is the symbol distance  $T$?

$T \ = \ $

$\ \rm µ s$

2

What is the bit rate  $R$ output by the source?

$R \ = \ $

$\ \rm kbit/s$

3

Is this representation unipolar or bipolar?

The symbol sequence is unipolar.
The symbol sequence is bipolar.

4

What is the source symbol  $q_2$?

$q_2 = \rm L$,
$q_2 = \rm H$.

5

What is the symbol probability  $p_{\rm H} = {\rm Pr}(q_\nu = \rm H$)?

$p_{\rm H} \ = \ $


Solution

(1)  According to the diagram,  the distance between two symbols is  $\underline{T = 2\ \rm µ s}$.


(2)  With this redundancy-free binary source – and only with such a source – the bit rate is $R = 1/T\hspace{0.15cm}\underline{=500 \ \rm kbit/s}$.


(3)  The possible amplitude coefficients are $\pm 1$.  Therefore,  the given symbol sequence is  bipolar.


(4)  The amplitude coefficient  $a_2$  can be read at  $2T = 4 \ \rm µ s$.  With bipolar mapping,  it follows that  $a_2 = -1$  for symbol  $q_2 \hspace{0.15cm}\underline {=\rm L}$.


(5)  Even if the diagram suggests otherwise for the short time interval shown here:  For a redundancy-free binary source,  in addition to the statistical independence of the symbols,  $p_{\rm H} = p_{\rm L}\hspace{0.15cm}\underline{ = 0.5}$  (equally probable symbols)  must also hold.